Implementasi Random Forest dan SMOTE untuk Prediksi Risiko Putus Sekolah Dasar Menuju Indonesia Emas 2045

Authors

  • Muhammad Alfathan Harriz Universitas Matana

DOI:

https://doi.org/10.62951/bridge.v3i2.408

Keywords:

Elementary School, Random Forest, SMOTE, Temporal Data

Abstract

This research investigates the implementation of Random Forest algorithms combined with Synthetic Minority Over-sampling Technique (SMOTE) to predict elementary school dropout rates in Indonesia, supporting the Indonesia Emas 2045 vision. A significant gap was identified in previous studies, which, despite utilizing artificial intelligence for dropout interventions, had not integrated temporal dimensions into data analysis. A temporal data-based classification model was developed using Indonesian Ministry of Education data from 2021-2023, incorporating lag features, delta calculations, and rolling statistics. Two models were implemented: one with SMOTE achieving 99% accuracy with perfect recall for high-risk regions, while the non-SMOTE model reached 100% accuracy. Temporal features were identified as crucial predictors, reflecting external fluctuations and annual changes impacting dropout decisions. This approach enables educational institutions to allocate resources more efficiently by prioritizing operational assistance for high-risk schools. The model's capacity to identify high-risk regions with 100% recall represents a strategic investment in strengthening Indonesia's human resource sustainability. To address the limitations of provincial aggregate data, expansion to include individual-level variables and model validation at district or school scales is recommended for future research.

Downloads

Download data is not yet available.

References

Alifa, V. N. (2023). Analisis faktor penyebab meningkatnya angka putus sekolah di Indonesia pada tahun 2022. Jurnal Pendidikan Sultan Agung, 3(2), Article 2. https://doi.org/10.30659/jp-sa.3.2.175-182

Andrade-Girón, D., Sandivar-Rosas, J., Marín-Rodriguez, W., Susanibar-Ramirez, E., Toro-Dextre, E., Ausejo-Sanchez, J., Villarreal-Torres, H., & Angeles-Morales, J. (2023). Predicting student dropout based on machine learning and deep learning: A systematic review. EAI Endorsed Transactions on Scalable Information Systems, 10(5), Article 5. https://doi.org/10.4108/eetsis.3586

Banaag, R., Sumodevilla, J. L., & Potane, J. (2024). Factors affecting student drop out behavior: A systematic review. International Journal of Educational Management and Innovation, 5(1), Article 1. https://doi.org/10.12928/ijemi.v5i1.9396

Cahyani, N. L. P. A. (2024). Machine learning approaches for customer churn prediction in the aquaculture technology sector. International Journal of Current Science Research and Review, 7(8). https://doi.org/10.47191/ijcsrr/V7-i8-74

Cho, C. H., Yu, Y. W., & Kim, H. G. (2023). A study on dropout prediction for university students using machine learning. Applied Sciences, 13(21), Article 21. https://doi.org/10.3390/app132112004

Dhani, A. A., Siswa, T. A. Y., & Pranoto, W. J. (2024). Perbaikan akurasi Random Forest dengan ANOVA dan SMOTE pada klasifikasi data stunting. Teknika, 13(2), Article 2. https://doi.org/10.34148/teknika.v13i2.875

Fadila, A., Syafriandi, S., Kurniawati, Y., & Salma, A. (2024). Classification of dropout rates in West Sumatra using the Random Forest algorithm with Synthetic Minority Oversampling Technique. UNP Journal of Statistics and Data Science, 2(3), Article 3. https://doi.org/10.24036/ujsds/vol2-iss3/183

Fitriana, S., Riniyanty, L., Laila, R., Pratama, S. A., & Lamasitudju, C. A. (2024). Prediksi siswa putus sekolah dan keberhasilan akademik menggunakan machine learning: Prediksi siswa putus sekolah dan keberhasilan akademik. The Indonesian Journal of Computer Science, 13(6), Article 6. https://doi.org/10.33022/ijcs.v13i6.4453

Ghozali, A., Pratiwi, H., & Handajani, S. S. (2023). Implementasi data mining menggunakan metode Random Forest dan Support Vector Machine dalam klasifikasi penyakit diabetes. Delta: Jurnal Ilmiah Pendidikan Matematika, 11(2), 147. https://doi.org/10.31941/delta.v11i2.2686

Herdian, C., Kamila, A., & Agung Musa Budidarma, I. G. (2024). Studi kasus feature engineering untuk data teks: Perbandingan label encoding dan one-hot encoding pada metode linear regresi. Technologia: Jurnal Ilmiah, 15(1), 93. https://doi.org/10.31602/tji.v15i1.13457

Hussain, L., Lone, K. J., Awan, I. A., Abbasi, A. A., & Pirzada, J.-R. (2022). Detecting congestive heart failure by extracting multimodal features with synthetic minority oversampling technique (SMOTE) for imbalanced data using robust machine learning techniques. Waves in Random and Complex Media, 32(3), 1079–1102. https://doi.org/10.1080/17455030.2020.1810364

Ilham, M. F. N., Annurrahma, K. D., Wirayuda, P., & Rudiman, R. (2024). Analisis kepuasan pengguna aplikasi Donorku dengan pendekatan metode Random Forest dengan SMOTE. Jurnal Informatika Teknologi dan Sains (Jinteks), 6(3), 508–513. https://doi.org/10.51401/jinteks.v6i3.4229

Jiménez, O., Jesús, A., & Wong, L. (2023). Model for the prediction of dropout in higher education in Peru applying machine learning algorithms: Random Forest, Decision Tree, Neural Network and Support Vector Machine. In 2023 33rd Conference of Open Innovations Association (FRUCT) (pp. 116–124). https://doi.org/10.23919/FRUCT58615.2023.10143068

Kumar, D., Kothiyal, A., Kumar, R., Hemantha, C., & Maranan, R. (2024). Random Forest approach optimized by the Grid Search process for predicting the dropout students. In 2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET) (pp. 1–6). https://doi.org/10.1109/ICICET59348.2024.10616372

Marta, J. K., Nugraha, A. E., & Anggorowati, K. D. (2023). Analisis penyebab anak putus sekolah pada jenjang pendidikan dasar di Desa Engkurai. Jurnal Pendidikan dan Pembelajaran Sekolah Dasar, 1(3), Article 3. https://doi.org/10.46368/jppsd.v1i3.1398

Nugraha, S. A. S., & Amiludin, A. (2024). Inovasi metode pembelajaran sekolah dasar berbasis connection sebagai pengembangan karakter social entrepreneurship dalam mewujudkan Indonesia emas 2045. Al-Mubtadi: Jurnal Pendidikan Guru Madrasah Ibtidaiyah, 1(2), 92–106. https://doi.org/10.58988/almubtadi.v1i2.282

Nugroho, A., & Rilvani, E. (2023). Penerapan metode oversampling SMOTE pada algoritma Random Forest untuk prediksi kebangkrutan perusahaan. Techno.Com, 22(1), Article 1. https://doi.org/10.33633/tc.v22i1.7527

Nurmalitasari, Awang Long, Z., & Faizuddin Mohd Noor, M. (2023). Factors influencing dropout students in higher education. Education Research International, 2023(1), 7704142. https://doi.org/10.1155/2023/7704142

Oktaviani, V., Rosmawarni, N., & Muslim, M. P. (2024). Perbandingan kinerja Random Forest dan SMOTE Random Forest dalam mendeteksi dan mengukur tingkat stres pada mahasiswa tingkat akhir. Informatik: Jurnal Ilmu Komputer, 20(1), Article 1. https://doi.org/10.52958/iftk.v20i1.9158

Paput, M. J., Suryowati, K., & Jatipaningrum, M. T. (2023). Perbandingan metode Random Forest dan Adaptive Boosting pada klasifikasi indeks pembangunan manusia di Indonesia. Jurnal Statistika Industri dan Komputasi, 8(2), 73–83. https://doi.org/10.34151/statistika.v8i2.4458

Prasetya, M. R. A., Priyatno, A. M., & Nurhaeni. (2023). Penanganan imputasi missing values pada data time series dengan menggunakan metode data mining. Jurnal Informasi dan Teknologi, 52–62. https://doi.org/10.37034/jidt.v5i2.324

Purwanto, A., Sartono, B., & Notodiputro, K. A. (2025). A comparison of Random Forest and Double Random Forest: Dropout rates of madrasah students in Indonesia. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 19(1), Article 1. https://doi.org/10.30598/barekengvol19iss1pp227-236

Puspa, C. I. S., Rahayu, D. N. O., & Parhan, M. (2023). Transformasi pendidikan abad 21 dalam merealisasikan sumber daya manusia unggul menuju Indonesia emas 2045. Jurnal Basicedu, 7(5), 3309–3321. https://doi.org/10.31004/basicedu.v7i5.5030

Ramadhanti, H. D. (2021). Klasifikasi status NEET pada penduduk usia muda di Indonesia dengan SVM dan Random Forest. Journal of System and Computer Engineering, 2(1), Article 1. https://doi.org/10.47650/jsce.v1i2.143

Rofi, M. M., Setiawan, F. A., & Riana, F. (2024). Perbandingan metode K-NN dan Random Forest pada klasifikasi mahasiswa berpotensi dropout. INFOTECH Journal, 10(1), 84–89. https://doi.org/10.31949/infotech.v10i1.8856

S, G. N., Suryanti, M., & Faridah, H. (2024). Strategi meningkatkan motivasi belajar siswa sekolah dasar sebagai upaya mengatasi putus sekolah. Jurnal Pengabdian Pendidikan Masyarakat (JPPM), 5(1), Article 1. https://doi.org/10.52060/jppm.v5i1.1500

Soleh, N., Fajriah, F., & Rahman, F. (2024). Kontribusi mahasiswa dalam meningkatkan kualitas sumber daya manusia dan mewujudkan visi Indonesia Emas 2045. Journal of Smart Education and Learning, 1(1), 22–28. https://doi.org/10.53088/jsel.v1i1.978

Sun, S., Zeng, Z., & Li, Q. (2024). A spatio-temporal evolution analysis framework based on sentiment recognition for temple murals. Journal of Information Science, 01655515241293766. https://doi.org/10.1177/01655515241293766

Surip, A., Pratama, M. A., Ali, I., Dikananda, A. R., & Purnamasari, A. I. (2021). Penerapan machine learning menggunakan algoritma C4.5 berbasis PSO dalam menganalisa data siswa putus sekolah. Informatics for Educators and Professional: Journal of Informatics, 5(2), 147–155. https://doi.org/10.51211/itbi.v5i2.1530

Villar, A., & de Andrade, C. R. V. (2024). Supervised machine learning algorithms for predicting student dropout and academic success: A comparative study. Discover Artificial Intelligence, 4(1), 2. https://doi.org/10.1007/s44163-023-00079-z

Widiasanti, I., Abdul, A. V., Nirwana, A., & Arlita, A. D. (2023). Ancaman melawan putus sekolah dengan dilema kualitas pendidikan Indonesia. JISIP (Jurnal Ilmu Sosial dan Pendidikan), 7(3), Article 3. https://doi.org/10.58258/jisip.v7i3.5228

Widyastuti, N. A. (2021). Analisis tren angka putus sekolah pada pendidikan dasar di Kabupaten Bantul. Spektrum Analisis Kebijakan Pendidikan, 10(2), 74–89. https://doi.org/10.21831/sakp.v10i2.17372

Downloads

Published

2025-04-23

How to Cite

Muhammad Alfathan Harriz. (2025). Implementasi Random Forest dan SMOTE untuk Prediksi Risiko Putus Sekolah Dasar Menuju Indonesia Emas 2045. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 3(2), 11–23. https://doi.org/10.62951/bridge.v3i2.408

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.