Evaluasi Kinerja AI berbasis Recurrent Neural Network (RNN) dalam Mengidentifikasi Ancaman Phising pada URL Website

Authors

  • Nailah Azzahra Institut Teknologi Sepuluh Nopember
  • Merry Dwi Handayani Institut Teknologi Sepuluh Nopember
  • Awwaliyah Aliyah Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.62951/bridge.v3i3.485

Keywords:

Phishing, URL, RNN, LSTM, Bi-LSTM, GRU

Abstract

Phishing is an evolving form of cybercrime that targets users' sensitive information through URL manipulation. Conventional detection methods such as blacklists and signature-based approaches have become increasingly inadequate in addressing the dynamic variations of modern phishing attacks. This study evaluates the effectiveness of Recurrent Neural Network (RNN) variants, such Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU), in detecting phishing threats based on URL data. The methodology involves a Systematic Literature Review (SLR) of scholarly publications from the past ten years, complemented by experimental implementation of the models using a public dataset from Kaggle. Literature findings show that Bi-LSTM consistently achieves the highest accuracy, up to 99%, while GRU stands out for its computational efficiency. Experimental results support these findings, with Bi-LSTM achieving an accuracy of 96.22%, GRU 96.29%, and LSTM 95.43%. Classification metrics indicate that RNN-based models perform very well in detecting benign and defacement URLs, although their performance on phishing URLs remains challenged, particularly in terms of recall. These results confirm that RNNs remain a promising approach for phishing detection systems, especially when integrated into hybrid models with complementary architectures. This study is expected to provide a foundation for developing precise and adaptive AI systems to combat increasingly sophisticated phishing threats.

Downloads

Download data is not yet available.

References

Alshingiti, Z., Alaqel, R., Al-Muhtadi, J., Haq, Q. E. U., Saleem, K., & Faheem, M. H. (2023). A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN. Electronics, 12(1), 232. https://doi.org/10.3390/electronics12010232

Anti-Phishing Working Group. (2025, Maret 19). Phishing Activity Trends Report: 4th Quarter 2024. https://docs.apwg.org/reports/apwg_trends_report_q4_2024.pdf

Asiri, S., Xiao, Y., & Li, T. (2024). PhishTransformer: A Novel Approach to Detect Phishing Attacks Using URL Collection and Transformer. Electronics, 13(1), 30. https://doi.org/10.3390/electronics13010030

Asiri, S., Xiao, Y., Alzahrani, S., Ju, M. (2024). PhishingRTDS: A Real-time Detection System for Phishing Attacks Using a Deep Learning Model. Computers and Security, 141, 103843. https://doi.org/10.1016/j.cose.2024.103843

Balogun, A. O., Adewole, K. S., & Raheem, M. O., Akande, O. N., Usman-Hamza, F. E., Mabayoje, M. A., Akintola, A. G., Asaju-Gbolagade, A. W., Jimoh, M. K., Jimoh, R. G., & Adeyemo, V. E. (2021). Improving the phishing website detection using empirical analysis of Function Tree and its variants. Heliyon, 7(7), e07437. https://doi.org/10.1016/j.heliyon.2021.e07437

Baskota, S. (2025). Phishing URL Detection using Bi-LSTM. arXiv. https://doi.org/10.48550/arXiv.2504.21049

Bharath, G. (2025). A Comparative Study of Traditional and AI-Based Phishing Detection Techniques. Insights2TechInfo. https://insights2techinfo.com/a-comparative-study-of-traditional-and-ai-based-phishing-detection-techniques/

Bozkir, A. S., Dalgic, F. C., & Aydos, M. (2023). GramBeddings: A New Neural Network for URL Based Identification of Phishing Web Pages Through N-gram Embeddings. Computers & Security, 124, 102964. https://doi.org/10.1016/j.cose.2022.102964

Catal, C., Giray, G., Tekinerdogan, B., Kumar, S., & Shukla, S. (2022). Applications of deep learning for phishing detection: A systematic literature review. Knowledge and Information Systems, 64(6), 1457–1500. https://doi.org/10.1007/s10115-022-01675-0

Chen, W., Zhang, W., Su, Y. (2018). Phishing Detection Research Based on LSTM Recurrent Neural Network. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 901. Springer, Singapore. https://doi.org/10.1007/978-981-13-2203-7_52

Ghojogh, B., & Ghodsi, A. (2023). Recurrent Neural Networks and Long Short-Term Memory Networks: Tutorial and Survey. arXiv preprint arXiv:2304.11461. https://arxiv.org/abs/2304.11461

Gupta, B. B., Gaurav, A., Attar, R. W., Arya, V., Alhomoud, A., & Chui, K. T. (2024). Optimized phishing detection with recurrent neural network and whale optimizer algorithm. Computers, Materials & Continua, 80(3), 4895–4916. https://doi.org/10.32604/cmc.2024.050815

Halgas, L., Agrafiotis, I., & Nurse, J. R. C. (2019). Catching the Phish: Detecting Phishing Attacks using Recurrent Neural Networks (RNNs). arXiv preprint arXiv:1908.03640. https://arxiv.org/abs/1908.03640

Husain, O. (2025, Februari 6). 99 Global Phishing Statistics & Industry Trends (2023–2025). Control D. https://controld.com/blog/phishing-statistics-industry-trends/

Kyaw, P. H., Gutierrez, J., & Ghobakhlou, A. (2024). A Systematic Review of Deep Learning Techniques for Phishing Email Detection. Electronics, 13(19), 3823. https://doi.org/10.3390/electronics13193823

Lamina, O. A., Ayuba, W. A., Adebiyi, O. E., Michael, G. E., Samuel, O. D., & Samuel, K. O. (2024). AI-Powered Phishing Detection and Prevention. Path of Science, 10(12), 112–117. https://doi.org/10.22178/pos.112-7

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv preprint arXiv:1506.00019. https://arxiv.org/abs/1506.00019

Maneriker, P., Stokes, J. W., Garcia Lazo, E., Carutasu, D., Tajaddodianfar, F., & Gururajan, A. (2021). URLTran: Improving Phishing URL Detection Using Transformers. arXiv. https://doi.org/10.48550/arXiv.2106.05256

Mohammad, R. M., Thabtah, F., & McCluskey, L. (2015). Predicting phishing websites based on self-structuring neural network. Neural Computing and Applications, 25(2), 443–458. https://doi.org/10.1007/s00521-013-1490-z

Nezhab, M. A., & Langarib, N. (2025). Phishing Detection Techniques: A review. Journal of Computing and Applied Informatics (JoCAI), 9(1), 32-46. https://doi.org/10.32734/jocai.v9.i1-19904

Opara, C., Chen, Y., & Wei, B. (2024). Look before you leap: Detecting phishing web pages by exploiting raw URL and HTML characteristics. Expert Systems with Applications, 236, 121183. https://doi.org/10.1016/j.eswa.2023.121183

Prasad, A., & Chandra, S. (2024). PhiUSIIL: A diverse security profile empowered phishing URL detection framework based on similarity index and incremental learning. Computers & Security, 136, 103545. https://doi.org/10.1016/j.cose.2023.103545

Rangapur, A., Kanakam, T., & Dhanvanthini, P. (2021). Phish-Defence: Phishing Detection Using Deep Recurrent Neural Networks (Version 4). arXiv. https://doi.org/10.48550/arXiv.2110.13424

Rashid, F., Doyle, B., Han, S. C., & Seneviratne, S. (2024). Phishing URL detection generalisation using unsupervised domain adaptation. Computer Networks, 245, 110398. https://doi.org/10.1016/j.comnet.2024.110398

Roy, S. S., Awad, A. I., Amare, L. A., Erkihun, M. T., & Anas, M. (2022). Multimodel Phishing URL Detection Using LSTM, Bidirectional LSTM, and GRU Models. Future Internet, 14(11), 340. https://doi.org/10.3390/fi14110340

Safi, A., & Singh, S. (2023). A systematic literature review on phishing website detection techniques. Journal of King Saud University - Computer and Information Sciences, 35(2), 590–611. https://doi.org/10.1016/j.jksuci.2023.01.004

Sangeetha, M., Navaz, K., Ravva, S. K., Roopa, R., Balaji, P., & Kumar, R. T. (2025). Enhanced Phishing URL Detection Using a Novel GRU-CNN Hybrid Approach. Journal of Machine and Computing, 5(1). https://doi.org/10.53759/7669/jmc202505007

Senouci, O., & Benaouda, N. (2025). Enhancing Phishing Detection in Cloud Environments Using RNN-LSTM in a Deep Learning Framework. Journal of Telecommunications and Information Technology. https://doi.org/10.26636/jtit.2025.1.1916

Singh, C., & Meenu. (2020). Phishing Website Detection Based on Machine Learning: A Survey. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE. http://doi.org/10.1109/ICACCS48705.2020.9074400

Thakur, K., Ali, M. L., Obaidat, M. A., & Kamruzzaman, A. (2023). A Systematic Review on Deep-Learning-Based Phishing Email Detection. Electronics, 12(21), 4545. https://doi.org/10.3390/electronics12214545

Vijayalakshmi, M., Shalinie, S. M., Yang, M. H., & Meenakshi, R. U. (2020). Web phishing detection techniques: A survey on the state‐of‐the‐art, taxonomy and future directions. IET Networks, 9(5), 235–246. https://doi.org/10.1049/iet-net.2020.0078

Xu, P. (2021). A Transformer-based Model to Detect Phishing URLs (arXiv:2109.02138). arXiv. https://doi.org/10.48550/arXiv.2109.02138

Downloads

Published

2025-06-23

How to Cite

Nailah Azzahra, Merry Dwi Handayani, & Awwaliyah Aliyah. (2025). Evaluasi Kinerja AI berbasis Recurrent Neural Network (RNN) dalam Mengidentifikasi Ancaman Phising pada URL Website. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 3(3), 15–37. https://doi.org/10.62951/bridge.v3i3.485