Implementasi Arsitektur Inception V3 Dengan Optimasi Adam, SGD dan RMSP Pada Klasifikasi Penyakit Malaria

Authors

  • Eren Dio Sefrila Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Basuki Rahmat Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Andreas Nugroho Sihananto Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.62951/bridge.v2i2.62

Keywords:

Adam, RMSProp, SGD, InceptionV3

Abstract

In the current era of technological advancement, deep learning has become a widely discussed and utilized topic, particularly in image classification, object detection, and natural language processing. A significant development in deep learning is the Convolutional Neural Network (CNN), which is enhanced with various optimizations such as Adam, RMSProp, and SGD. This thesis implements the Inception v3 architecture for the deep learning model, utilizing these three optimization methods to classify malaria disease. The study aims to evaluate performance and determine the best optimization based on classification accuracy. The results indicate that the SGD optimization with a learning rate of 0.001 achieved an accuracy of 94%, RMSProp with learning rates of 0.001 and 0.0001 achieved an accuracy of 96%, and Adam with learning rates of 0.001 and 0.0001 achieved an accuracy of 95%.

Downloads

Download data is not yet available.

References

Faisal, A., & Subekti, A. (2021). Deep Neural Network Untuk Prediksi Stroke. Jepin (Jurnal Edukasi Dan Penelitian Informatika), 7(3), 443-449.

Fitri, A. A. (2022). Perbandingan Arsitektur Vgg-16 Dan Resnet-50 Dengan Optimasi Adam Dan Rmsprop Pada Klasifikas Citra Penyakit Daun Padi (Doctoral Dissertation, Upn Veteran Jawa Timur).

Irfan, D., Rosnelly, R., Wahyuni, M., Samudra, J. T., & Rangga, A. (2022). Perbandingan Optimasi Sgd, Adadelta, Dan Adam Dalam Klasifikasi Hydrangea Menggunakan Cnn. Journal Of Science And Social Research, 5(2), 244-253.

Iriyanto, S.Y., & Zaini, T.M. (2013, August 3). Pengolahan Citra Digital. Researchgate. Retrieved April 10, 2023, From Https://Www.Researchgate.Net/Profile/Suhendro- Irianto/Publication/311708107_Pengolahan_Citra_Digital/Links/58565f 7408aeff086bfbb3b4/Pengolahan-Citra-Digital.Pdf

Lina, Q. (2019, January 2). Apa Itu Convolutional Neural Network? | By Qolbiyatul Lina. Medium. Retrieved April 10, 2023, From Https://Medium.Com/@16611110/Apa-Itu-Convolutional-Neural-Network- 836f70b193a4

Nugroho, B., Puspaningrum, E. Y., & Munir, M. S. Kinerja Algoritma Optimasi Root-Mean-Square Propagation Dan Stochastic Gradient Descent Pada Klasifikasi Pneumonia Covid-19 Menggunakan Cnn. Jepin (Jurnal Edukasi Dan Penelitian Informatika), 7(3), 420-425.

Primastuti, E. Y. (2022). Klasifikasi Jenis-Jenis Tumor Otak Menggunakan Model Arsitektur Inception-V3 (Doctoral Dissertation, Universitas Muhammadiyah Malang).

Supriyanto, A., Kusuma, W. A., & Rahmawan, H. (2022). Klasifikasi Kanker Tumor Payudara Menggunakan Arsitektur Inception-V3 Dan Algoritma Machine Learning. Jurnal Al-Azhar Indonesia Seri Sains Dan Teknologi, 7(3), 187-193.

Witantoa, K. S., Era, N. A. S., Karyawatia, A. E., Arya, I. G. A. G., Kadyanana, I., & Astutia, L. G. Implementasi Lstm Pada Analisis Sentimen Review Film Menggunakan Adam Dan Rmsprop Optimizer. Jurnal Elektronik Ilmu Komputer Udayana P-Issn, 2301, 5373.

Published

2024-05-17

How to Cite

Eren Dio Sefrila, Basuki Rahmat, & Andreas Nugroho Sihananto. (2024). Implementasi Arsitektur Inception V3 Dengan Optimasi Adam, SGD dan RMSP Pada Klasifikasi Penyakit Malaria. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(2), 69–84. https://doi.org/10.62951/bridge.v2i2.62