Klasifikasi Penyakit Daun Apel Menggunakan Ekstraksi Fitur Warna RGB
DOI:
https://doi.org/10.62951/repeater.v2i3.120Keywords:
leaf disease, matlab, rgb, detectionAbstract
This research designs a system to classify apple leaf diseases using RGB (red, green and blue) color feature extraction. The essence of this research is to design a system to recognize and determine disease on apple leaves based on RGB color features using the Matlab 2024 application. The data in this research uses apple leaf images from kaggle.com, which are then cropped and adjusted to the image shape and precision in the leaf image. , Increasing the contrast of the cropped image and converting it to a grayscale image, Determining the threshold for binarization and converting the grayscale image to a binary image, Detection of green, yellow, and black/gray pixels based on RGB values and calculating the proportion of each color, Detection of pixels scab by filtering out black/grey pixels that do not include green or yellow pixels Classification of leaves based on the proportion of detected colors.
With the method that has been passed and uses apple leaf data, namely Healthy, Rust and Scab, each data contains 20 images with a total of 60 images and the level of accuracy is determined using the labeling method for each data and reaches the final result with an accuracy level of 86, 6667% which has a fairly accurate meaning
Downloads
References
Abraham, R. I., Hidayat, D., & Darana , S.U, D. (2018). IDENTIFIKASI KUALITAS KESEGARAN SUSU SAPI MELALUI PENGOLAHAN CITRA DIGITAL BERDASARKAN METODE CONTENT-BASED IMAGE RETRIEVAL (CBIR) DENGAN KLASIFIKASI DECISION TREE. e-Proceeding of Engineering, 2048.
Azizah, Q. N., & Andreyestha. (2023). KLASIFIKASI PENYAKIT DAUN APEL MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK. Jurnal Ilmu Komputer dan Informatika , 242.
Baskara, M. (2010). Pohon Apel itu masih (bisa) berbuah lebat. Majalah Ilmiah Populer Bakosurtanal - Ekspedisi Geografi Indonesia., 78-82.
Dotto, A. C., Dalmolin, R. S., Grunwald, S., & Caten, A. T. (2017). Two preprocessing techniques to reduce model covariables in soil property predictions by Vis-NIR spectroscopy. Soil and Tillage Research, 59-68.
Dwi Septian, M. R., Paliwang, A. A., Cahyanti, M., & Swedia, E. R. (2020). PENYAKIT TANAMAN APEL DARI CITRA DAUN DENGAN CONVOLUTIONAL NEURAL NETWORK. Sebatik, 207-212.
Ilhamy , R. S., & Sanjaya , U. P. (2023). Algoritma K-Nearest Neighbors (KNN) untuk Klasifikasi Citra Buah Pisang dengan Ekstraksi Ciri Gray Level Co-Occurrence. Jurnal Telematika, 88.
Indriani, N., Rainarli, E., & Dewi, K. E. (2017). Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen. JURNAL INFOTEL, 416.
Jiang, P., Chen, Y., & Bin, L. (2019). Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks. IEEE Access, 59069–59080.
Nurmasani, A., & Pristyanto, Y. (2021). LGORITME STACKING UNTUK KLASIFIKASI PENYAKIT JANTUNG PADA DATASET IMBALANCED CLASS. Jurnal Pseudocode,, 21.
Ratnawati, L., & Sulistyaningrum, D. R. (2019). Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit pada Daun Apel. JURNAL SAINS DAN SENI ITS, 2337-3520.
Saputra, K., & Perangin-Angin, M. I. (2018). at Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan Jaringan Syaraf Tiruan. Jurnal Informatika, 169-174.
Xiong, W., & Li, Q. (2012). Chinese skin detection in different color spaces. IEEE, 1-5.
Zainuddin, M., Sianturi, L. T., & Hondro, R. K. (2017). IMPLEMENTASI METODE ROBINSON OPERATOR 3 LEVEL UNTUK MENDETEKSI TEPI PADA CITRA DIGITAL. Jurnal Riset Komputer (JURIKOM), 1-5.
Zhengming, L., Tong, Z., & Jin, Z. (2010). Skin detection in color images. Eng. Technol. ICCET, 156.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Repeater : Publikasi Teknik Informatika dan Jaringan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.