Pengelompokan Menggunakan Metode Clustering Pada Pola Hidup Pengguna KB
DOI:
https://doi.org/10.62951/repeater.v2i4.206Keywords:
Data mining, Lifestyle, k-means algorithmAbstract
Healthy lifestyles are habits of doing something, be it food, healthy behavior so as to avoid the disturbance of all kinds of diseases, both physical and non-physical diseases, as well as birth control users must also strive for a healthy lifestyle, such as managing a healthy diet, rest, exercise, eating vegetables and fruits, doing optimal physical activity, not consuming alcohol, and maintaining a healthy body. In this problem, many family planning users do not pay attention to a healthy lifestyle because they think that the family planning tools used have no risk to health, but the use of family planning has side effects on health such as menstruation is not smooth, the body is obese, the body feels warm or feverish, there are blood clots, nausea, bloating, changes in vision, difficulty in getting back to normal, headaches, and others. To be able to attract the attention of the community in implementing a healthy lifestyle for family planning users, it is very necessary to have a system that can help people in changing their unhealthy lifestyle to a healthier one by grouping family planning user data based on variables that have been determined using the clustering method, to group data on healthy lifestyles for family planning users which later the results of this study can be used as input and guidance for a healthy lifestyle for family planning users, so that family planning users are more careful and have a healthy life. Of the 20 data, there are 3 groups, namely group 1 there are 4 data and group 2 there are 4 data and group 3 there are 12 data from the above results it can be seen that in cluster 3 is a group on family planning users based on a lot with a total of 12 data and is located in the contraceptive type group (X) is injectable birth control, and for the lifestyle group (Y), namely Frequent Night Baths and Risk (Z), namely Decreased Bone Strength.
Downloads
References
Amna, S, W., Putra, T. A., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Heryana, N., Indriyani, T., & Santoso, L. W. (2023). Data Mining Data mining. In D. Ediana (Ed.), PT Global Eksekutif Teknologi (1st ed., Vol. 1, Issue 1). PT Global Eksekutif Teknologi. https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part
Aziz Muslim, M., Prasetiyo, B., Harum M, E. L., Juli H, A., Mirqotussa’adah, Hardiyanti R, S., & Nurzannahputra, A. (2019). Data Mining Algoritma C4.5. In E. Listiana & N. Cahyani (Eds.), ILKOM UNNES (1st ed., Vol. 1, Issue 1). ILKOM UNNES.
Haerani, E., Budianita, E., Nazir, A., & Mahesa, W. (2023). Penerapan K-Means Clustering Pada Data Obat/Alkes di Apotik RSUD Selasih. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI), 1(1), 220–229.
Herlin Lutfiannisa, A., Maimunah, & Sukmasetya, P. (2024). Clustering Data Pasien Berdasarkan Usia di Puskesmas Menerapkan Metode K-Means. Journal of Information System Research, 5(2), 639–647. https://doi.org/10.47065/josh.v5i2.4755
Kemensos RI. (2020). Perilaku hidup bersih dan sehat (phbs) penguatan kapabilitas anak dan keluarga. In Kementrian Sosial Republik Indonesia. Kementrian Sosial Republik Indonesia.
Matahari, R., Utami, F. P., & Sugiharti, S. (2013). Keluarga Berencana dan Alat Kontrasepsi. In 1 (Ed.), Keluarga Berencana dan Alat Kontrasepsi (1st ed.). CV. Pustaka Ilmu Group. https://doi.org/10.1300/J153v04n01_13
Maulia, S., Serasi Ginting, B., & Anton, S. (2021). Implementasi Data Mining Pengelompokan Jenis Penyakit Pasien Menggunakan Metode Clustering (Studi Kasus : Puskesmas Sambirejo). Jurnal Informatika Kaputama (JIK), 5(1), 71–80. https://doi.org/10.59697/jik.v5i1.304
Munazilin, A., & Santoso, F. (2021). logika dan algoritma pemrograman (Khumaidi (ed.); 1st ed.). CV. AA. Rizky.
Pane, P. P., Ramadhan Nasution, Y., & Furqan, M. (2024). Implementasi Data Mining dengan K-Means Clustering untuk Memprediksi Pengadaan Obat. Journal of Computer System and Informatics (JoSYC), 5(2), 286–296. https://doi.org/10.47065/josyc.v5i2.4920
Relita Buaton, Zarlis, M., Efendi, S., & Yasin, V. (2019). Data Mining Time Series (Vol. 1, pp. XIV–235). WADE GROUP.
Sariani, D. S. R. S. I. G. (2022). Pengelompokan Data Pengguna Narkoba Yang Melakukan Program Rehabilitasi Rawat Jalan Menggunakan Metode Clustering. Informasi Dan Informatika, 11, 8–13.
Sianturi, R. N., Sihombing, M., & ... (2023). Data Mining Grouping the Feasibility of Applying for Credit To Customers Using the K-Means Algorithm Method on Cv. Motorbike …. … of Mathematics and …, 2(2), 49–60. http://journal.binainternusa.org/index.php/matech/article/view/145%0Ahttp://journal.binainternusa.org/index.php/matech/article/download/145/106
Yulia, N., Saragih, R., & Ambarita, I. (2021). Data Mining Pengelompokan Anak Stunting Berdasarkan Usia , Penyebab dan Pekerjaan Orang Tua Dengan Menggunakan Metode Clustering ( Studi Kasus : Dinas Kesehatan Kabupaten Langkat ). Seminar Nasional Informatika (SENATIKA)Prosiding SENATIKA 2021, 2(1), 12. http://www.ejournal.pelitaindonesia.ac.id/ojs32/index.php/SENATIKA/article/view/1174/661
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Repeater : Publikasi Teknik Informatika dan Jaringan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.