Deteksi Cyberbullying pada Pemain Sepak Bola di Platform Media Sosial “X” Menggunakan Metode Long Short-Term Memory (LSTM)

Authors

  • Pawit Widiyantoro Universitas Telkom Purwokerto
  • Paradise Paradise Universitas Telkom Purwokerto
  • Yogo Dwi Prasetyo Universitas Telkom Purwokerto

DOI:

https://doi.org/10.62951/repeater.v3i1.382

Keywords:

Cyberbulliying Detecttion, Football Player, Social Media, Long Short-Term Memory, LSTM

Abstract

Social media has become a crucial part of modern life around the globe, providing users with various conveniences. However, its widespread use has also brought about new challenges, one of which is cyberbullying. This harmful issue can have serious emotional and physical effects on those targeted. Cyberbullying occurs in many areas, including sports, and soccer—a sport loved by millions—is no exception. Soccer players often face severe criticism, hate speech, and harassment on social media platforms. To tackle this problem, this study aims to create a strong model for detecting cyberbullying on the social media platform “X” using the Long Short-Term Memory (LSTM) method. By utilizing advanced machine learning techniques, the proposed model intends to identify and reduce instances of cyberbullying, helping to create a safer online space for athletes and the wider community.

Downloads

Download data is not yet available.

References

Akhter, A., Uzzal, K. A., & Polash, M. M. A. (2019). Cyber bullying detection and classification using multinomial naïve Bayes and fuzzy logic. International Journal of Mathematical Sciences and Computing, 5(4), 1–12.

Alsaed, Z., & Eleyan, D. (2021). Approaches to cyberbullying detection on social networks: A survey. Journal of Theoretical and Applied Information Technology, 15(13).

Arimoro, A., & Elgujja, A. (2019). When dissent by football fans on social media turns to hate: Call for stricter measures. University of Maiduguri Journal of Public Law, 6(1).

Candra, R. M., & Rozana, A. N. (2020). Klasifikasi komentar bullying pada Instagram menggunakan metode K-nearest neighbor. IT Journal Research and Development, 5(1), 45–52.

Dalvi, R. R., Chavan, S. B., & Halbe, A. (2020). Detecting a Twitter cyberbullying using machine learning. International Conference on Intelligent Computing and Control System (ICICCS 2020).

Datareportal. (2024). Global social media statistics. https://datareportal.com/.

de Souza Dias, T., & Thapa, S. (2021). Tackling football-related online hate speech: The role of international human rights law: Part I. https://www.ejiltalk.org/.

Desai, A., Kalaskar, S., Kumbhar, O., & Dhumal, R. (2021). Cyber bullying detection on social media using machine learning. ITM Web of Conferences, 40, 1–5.

Gill, H. S., & Khehra, B. S. (2021). Hybrid classifier model for fruit classification. Multimedia Tools and Applications, 80(18), 27495–27530. https://doi.org/10.1007/s11042-021-10772-9

GilPress. (2023). Cyberbullying facts & statistics (2024). https://whatsthebigdata.com/cyberbullying-statistics-facts.

Gorro, K. D., Sabellano, M. J. G., Gorro, K., Maderazo, C., & Capao, K. (2018). Classification of cyberbullying in Facebook using Selenium and SVM. 2018 3rd International Conference on Computer and Communication System (ICCCS), 183–186.

Huang, F., Li, X., Yuan, C., Zhang, S., Zhang, J., & Qiao, S. (2022). Attention-emotion-enhanced convolutional LSTM for sentiment analysis. IEEE Transactions on Neural Networks and Learning Systems, 33(9), 4332–4345.

Maslej-Krešňáková, V., Sarnovský, M., Butka, P., & Machová, K. (2020). Comparison of deep learning models and various text pre-processing techniques for the toxic comments classification. Applied Sciences (Switzerland), 10(23), 1–26.

Monika, R., Deivalakshmi, S., & Janet, B. (2019). Sentiment analysis of US airlines tweets using LSTM/RNN. IEEE 9th International Conference on Advanced Computing (IACC), 92–95.

Muhammad, P. F., Kusumaningrum, R., & Wibowo, A. (2021). Sentiment analysis using Word2vec and long short-term memory (LSTM) for Indonesian hotel reviews. Procedia Computer Science, 179, 728–735.

Muneer, A., & Fati, S. M. (2020). A comparative analysis of machine learning techniques for cyberbullying detection on Twitter. Future Internet, 12(11), 1–21.

Murthy, G. S. N., Rao Allu, S., Andhavarapu, B., Bagadi, M., & Belusonti, M. (2020). Text-based sentiment analysis using LSTM. International Journal of Engineering Research & Technology (IJERT), 9(5), 299–303.

Nandakumar, V. (2018). Cyberbullying revelation in Twitter data using naïve Bayes classifier algorithm. International Journal of Advanced Research in Computer Science, 9(1), 510–513.

Ni, R., & Cao, H. (2020). Sentiment analysis based on GloVe and LSTM-GRU. 39th Chinese Control Conference, 7492–7497.

Nikmah, T. L., Ammar, M. Z., Allatif, Y. R., Husna, R. M. P., Kurniasari, P. A., & Bahri, A. S. (2022). Comparison of LSTM, SVM, and Naïve Bayes for classifying sexual harassment tweets. Journal of Soft Computing Exploration, 3(2), 131–137.

Ofcom, & The Alan Turing Institute. (2022). Crossing the line: Seven in ten Premier League footballers face Twitter abuse. https://fcbusiness.co.uk/news/crossing-the-line-seven-in-ten-premier-league-footballers-face-twitter-abuse/.

Perera, A., & Fernando, P. (2021). Accurate cyberbullying detection and prevention on social media. Procedia Computer Science, 181, 605–611.

Rehman, A. U., Malik, A. K., Raza, B., & Ali, W. (2019). A hybrid CNN-LSTM model for improving accuracy of movie reviews sentiment analysis. Multimedia Tools and Applications, 78(18), 26597–26613.

Setiawan, Y., Ulva Maulidevi, N., Surendro, K., & Korespondensi, P. (2022). Deteksi cyberbullying dengan mesin pembelajaran klasifikasi (supervised learning): Peluang dan tantangan. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIK), 9(7), 1577–1582.

Srinivas, A. C. M. V., Satyanarayana, Ch., Divakar, Ch., & Sirisha, K. P. (2021). Sentiment analysis using neural network and LSTM. IOP Conference Series: Materials Science and Engineering, 1074(1), 012007.

Wang, J.-H., Liu, T.-W., Luo, X., & Wang, L. (2018). An LSTM approach to short text sentiment classification with word embeddings. Conference on Computational Linguistics and Speech Processing, 214–223.

Zhou, J., Lu, Y., Dai, H. N., Wang, H., & Xiao, H. (2019). Sentiment analysis of Chinese microblog based on stacked bidirectional LSTM. IEEE Access, 7, 38856–38866.

Downloads

Published

2025-01-31

How to Cite

Pawit Widiyantoro, Paradise Paradise, & Yogo Dwi Prasetyo. (2025). Deteksi Cyberbullying pada Pemain Sepak Bola di Platform Media Sosial “X” Menggunakan Metode Long Short-Term Memory (LSTM). Repeater : Publikasi Teknik Informatika Dan Jaringan, 3(1), 201–217. https://doi.org/10.62951/repeater.v3i1.382

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.