Analisis Sentimen Twitter terhadap Tren Penyebaran Informasi Pelaku Kejahatan Menggunakan Algoritma Naives Bayes
DOI:
https://doi.org/10.62951/bridge.v2i2.63Keywords:
Criminals, Naive Bayes Algorithm, Sentiment Analysis, Social Media, TwitterAbstract
In the rapidly developing digital era, social media such as Twitter has become part of everyday life and facilitates the rapid dissemination of information, including information about criminals. This research aims to analyze public sentiment towards information about criminals spread on Twitter using the Naive Bayes algorithm. This algorithm was chosen because of its simplicity and effectiveness in text classification. Data was collected through a crawling process from Twitter, followed by a preprocessing stage to remove noise. The research results show that public sentiment towards information about criminals on Twitter is divided into three categories: positive, neutral and negative. After classification, it was found that neutral sentiment increased significantly to 63.4%, while positive and negative sentiment decreased to 10.5% and 26.1%. These findings indicate that people tend to be more careful in reacting to sensitive information. This research provides important insights for related parties in managing information about criminals on social media and can be a reference for developing further policies and strategies.
Downloads
References
Aliyah, A., Azzahra, N., Putri, A. I., & Rakhmawati, N. A. (2024). Dataset for Twitter Sentiment Analysis on Criminal Data Propagation using Naive Bayes Algorithm (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11243533.
Annur, C., M. (2023). Ada 27 Juta Pengguna Twitter di Indonesia, Terbanyak ke-4 Global. Databoks. Available at: https://databoks.katadata.co.id/datapublish/2023/11/28/ada-27-juta-pengguna-twitter-di-indonesia-terbanyak-ke-4-global. Diakses tanggal 19 Mei 2024.
Azhar, R., Surahman, A., & Juliane, C. (2022). Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes. Jurnal Sains Komputer & Informatika (J-SAKTI), 6(1): 267-281.
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131-145. https://doi.org/10.33365/jtk.v15i1.744.
Fahmi, R., N., Nursyifa, & Primajaya, A. (2021). Analisis Sentimen Pengguna Twitter Terhadap Kasus Penembakan Laskar FPI oleh Polri dengan Metode Naive Bayes Classifier. Jurnal Informatika dan Komputer, 5(2). https://dx.doi.org/10.26798/jiko.v5i2.437.
Fikri, M. & Rusdiana, S. (2023). RUANG LINGKUP PERLINDUNGAN DATA PRIBADI: KAJIAN HUKUM POSITIF INDONESIA. GANESHA LAW REVIEW, 5(1).
Fitriani, Y. & Pakpahan, R. (2020). Analisa Penyalahgunaan Media Sosial untuk Penyebaran Cybercrime di Dunia Maya atau Cyberspace. Cakrawala: Jurnal Humaniora Bina Sarana Informatika, 20(1), 21-27. https://doi.org/10.31294/jc.v19i2.
Parlika, R., Pradika, S. I. , Hakim, A. M., & K. R. N. M. (2020). Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob. Jurnal Ilmiah Teknologi Informasi dan Robotika, 2(2): 33–37.
Priansya, S. (2017). NORMALISASI TEKS MEDIA SOSIAL MENGGUNAKAN WORD2VEC, LEVENSHTEIN DISTANCE, DAN JARO-WINKLER DISTANCE. Tugas Akhir. Surabaya: Institut Teknologi Sepuluh Nopember.
Suari, K. R. A. & Sarjana, I M. (2023). Menjaga Privasi di Era Digital: Perlindungan Data Pribadi di Indonesia. JURNAL ANALISIS HUKUM, 6(1): 132-146.
Surapati, U. & Zulkarnain, A. Y. (2023). IMPLEMENTASI METODE NAÏVE BAYES UNTUK MENDETEKSI HATE SPEECH PADA TWITTER. Journal of Information Technology and Computer Science (INTECOMS), 6(2): 830-837.
Rahmah Tamhidah, M. A. (2023). Pengaruh Media Sosial Terhadap Penyebaran Informasi Palsu dan Kejahatan Siber. Innovative: Journal Of Social Science Research, 3(6), 9133–9147. https://doi.org/10.31004/innovative.v3i6.7197.
Toy, K. V. S., Sari, Y. A., & Cholissodin, I. (2021). Analisis Sentimen Twitter menggunakan Metode Naive Bayes dengan Relevance Frequency Feature Selection (Studi Kasus: Opini Masyarakat mengenai Kebijakan New Normal). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(11), 5068–5074. Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10172.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bridge : Jurnal publikasi Sistem Informasi dan Telekomunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.