Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Iblite Luxury Menggunakan Algoritma Apriori

Authors

  • Anggi Canita Simanjuntak Universitas Potensi Utama
  • Miranda Elisabet Sitanggang Universitas Potensi Utama
  • Muhairoh Indah Cahyani Universitas Potensi Utama
  • Nita Syahputri Universitas Potensi Utama

DOI:

https://doi.org/10.62951/bridge.v2i3.106

Keywords:

Data Mining, Association Rules, Apriori Algorithms

Abstract

Data mining is a technique to dig up new information from a data warehouse, information is seen as very important and valuable because by mastering information it is easy to achieve a goal, this makes everyone compete to obtain information, as well as in trading businesses such as the Iblite Luxury store.  This store is located in Medan close to residents' houses, Sales transaction data will continue to grow, causing data storage to be even larger. Sales transaction data is only used as an archive without being properly utilized. Basically, a dataset has very useful information. Market basket analysis with a priori algorithm is one of the data mining methods that aims to find association patterns based on consumer shopping patterns, so that it can be known what items of goods are purchased in a At the same time, the results of this study found that the highest support and confidence values were Ysl and Chanel with a support value of 50% and confidence of 75%.

Downloads

Download data is not yet available.

References

Buulolo, E. (2017). ImplementasiI Algoritma Apriori Pada Sistem Persediaan Obat ( Studi Kasus : Apotik Rumah Sakit Estomihi ).

Fauzy, M., & Asror, I. (2016). Penerapan Metode Association Rule Menggunakan Algoritma Apriori Pada Simulasi Prediksi Hujan Wilayah Kota Bandung, II(2).

Gamarra, C., Guerrero, J. M., & Montero, E. (2016). A knowledge discovery in databases approach for industrial microgrid planning. Renewable and Sustainable Energy Reviews, 60, 615–630.

Gunadi, G., & Sensuse, D. I. (2012). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( FP-GROWTH ), 4(1).

Jiawei Han And Micheline Kamber. (2006). “ Data Mining : Concepts and Techiques ”. San Fransisco : Morgan Kaufmann Publishers

Putro, A. N. S., Ernawati, & Wisnubhadra, I. (2016). Market Basket Analysis Pada Magister Teknik Informatika ,Universitas Atma Jaya Yogyakarta, 978–979

Santony, J. (2012). IMPLEMENTASI DATA MINING DENGAN METODE MARKET BASKET ANALYSIS Julius Santony 1, 5(2), 56–63

Santoso, H., Hariyadi, I. P., & Prayitno. (2016). Data Mining Analisa Pola Pembelian Produk. Teknik Informatika, (1), 19– 24.

Solnet, D., Boztug, Y., & Dolnicar, S. (2016). An untapped gold mine? Exploring the potential of market basket analysis to grow hotel revenue. International Journal of Hospitality Management, 56, 119–125.

Subarsono, D. (2014). Perbedaan Pelayanan Pada Ritel Tradisional Dengan Ritel Modern Di Kota Cirebon ., 2(2).

Subarsono, D. (2014). Perbedaan Pelayanan Pada Ritel Tradisional Dengan Ritel Modern Di Kota Cirebon ., 2(2).

Wulandari, H. N. (2014). Pemanfaatan Algoritma Apriori untuk Perancangan Ulang Tata Letak Barang di Toko Busana.

Published

2024-06-29

How to Cite

Anggi Canita Simanjuntak, Miranda Elisabet Sitanggang, Muhairoh Indah Cahyani, & Nita Syahputri. (2024). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Iblite Luxury Menggunakan Algoritma Apriori. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(3), 62–74. https://doi.org/10.62951/bridge.v2i3.106

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.