Penerapan K-Means Clustering Untuk Menentukan Jumlah Pengangguran Berdasarkan Umur
Studi Kasus Di Badan Statistik Provinsi DKI Jakarta 2020-2022
DOI:
https://doi.org/10.62951/repeater.v2i3.116Keywords:
K-Means, unemployment, statisticsAbstract
Unemployment is a persistent problem in the labor market, thus hampering economic development and national prosperity. Indonesia, including its capital Jakarta, continues to face significant levels of unemployment compared to neighboring countries. This research focuses on analyzing the structure of unemployment in Jakarta using K-Means Clustering to categorize unemployment data based on age groups (2020-2022) sourced from the Central Statistics Agency. Analysis carried out via RapidMiner revealed three clusters:-Cluster 0: Age 30-60 years and above, Cluster 1: Age 20-24 years, Cluster 2: Age 15-19 and 25-29 years. The findings show that the 20-24 year age group has the highest unemployment rate (399,167 people), while the 30-60 year and above age group shows the lowest unemployment rate (75,560 people). This clustering approach provides insight into the distribution of unemployment by different age demographics in Jakarta, highlighting areas where targeted interventions may be needed to effectively address this socio-economic challenge
Downloads
References
Al, U., Indonesia, A., Aisyah, O., Arsyad, T., Nurlatifah, M. B. A. H., Sunarmo, M. M., Program, M. S., Manajemen, S., Ekonomi, F., & Bisnis, D. (2022). Laporan akhir penelitian: Penerapan K-Means clustering dalam menentukan strategi promosi. November.
Arianto Zega, Y., Leona, M., Putra, S., Angelina, N., Phang, S., & Loo, E. (2022). Analisa kebijakan pemerintah terkait ancaman pengangguran pasca kenaikan inflasi. Jurnal Multidisiplin Indonesia, 1(4), 1121–1126. https://doi.org/10.58344/jmi.v1i4.108
Basalamah, A. T., & Setyadi, R. (2023). Penerapan algoritma K-Means clustering pada tingkat penyelesaian pendidikan di Provinsi Indonesia. Jurnal Informatika Dan Teknologi Komputer, 4(2), 114–121. https://ejurnalunsam.id/index.php/jicom/
Canda Naya, A. S. (2023). Implementasi data mining untuk pengelompokan pengangguran terbuka di Indonesia dengan metode clustering. Jurnal Teknologi Pelita Bangsa, 14(2), 99–104.
Di, P., Dki, P., & Handayanna, F. (2024). Penerapan algoritma K-Means untuk mengelompokkan kepadatan. Journal of Applied Computer Science and Technology (JACOST), 5(1), 50–55.
Dongga, J., Sarungallo, A., Koru, N., & Lante, G. (2023). Implementasi data mining menggunakan algoritma Apriori dalam menentukan persediaan barang (Studi kasus: Toko Swapen Jaya Manokwari). G-Tech: Jurnal Teknologi Terapan, 7(1), 119–126. https://doi.org/10.33379/gtech.v7i1.1938
Pastia, N. I., & Dikananda, F. N. (2023). Pengelompokan data pengangguran terbuka menggunakan algoritma K-Means berdasarkan Provinsi Jawa Barat. Jurnal Dinamika Informatika, 12(1), 59–69.
Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan aplikasi RapidMiner untuk prediksi nilai tukar rupiah terhadap US Dollar dengan metode linear regression. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(1), 8–17. https://doi.org/10.25077/teknosi.v7i1.2021.8-17
Rifky, R. A., Musrini B, M., & Fitrianti F, N. (2021). Membangun data warehouse untuk menganalisa pola siswa yang mendaftar di ITENAS (Studi kasus Institut Teknologi Nasional Bandung). Jurnal Ilmiah Teknologi Infomasi Terapan, 8(1), 45–56. https://doi.org/10.33197/jitter.vol8.iss1.2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Repeater : Publikasi Teknik Informatika dan Jaringan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.