Analisa Data Shopping Trends Menggunakan Algoritma Klasifikasi Dengan Metode Naive Bayes

Authors

  • Andi Diah Kuswanto Universitas Bina Sarana Informatika
  • Said Imam Puro Universitas Bina Sarana Informatika
  • Jodi Hariyan Universitas Bina Sarana Informatika
  • Ridho Rafliansyah Universitas Bina Sarana Informatika
  • Muhammad Rival Aziz Universitas Bina Sarana Informatika
  • Pebro Vaulina Rajagukguk Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.62951/repeater.v2i3.118

Keywords:

Rapidminer, Dataset, Category, Classification, Naïvebayes

Abstract

In the era of rapid digitalization, understanding consumer behavior through data is becoming increasingly important for retail businesses. Shopping trends, such as those contained in this study, provide in-depth insights into various aspects of consumer behavior, from demographics to purchasing preferences and patterns of discount usage. This data is invaluable in formulating effective marketing strategies, improving customer experience, and optimizing business operations. The data used in this study included a variety of relevant variables, such as age, gender, location, product categories purchased, number of purchases, payment methods, and frequency of purchases. This information allows for a comprehensive analysis of how these factors affect consumer spending decisions. For example, analytics can reveal seasonal trends in purchases, product color and size preferences, and the impact of discounts and promo codes on sales volume. In addition, this dataset also reflects the changes in consumer behavior that have occurred over the past few years. Quantitative methodology is a research approach used to collect and analyze numerical data to understand patterns, relationships, and events in a given population. Data is collected from various sources such as online sales transactions, consumer surveys, Naive Bayesian algorithms are applied to the dataset that has been processed. The data was divided into two sets: training (80%) and testing (20%).

 

 

Downloads

Download data is not yet available.

References

Akbar, M., & Rahmanto, Y. (2020). Desain Data Warehouse Penjualan Menggunakan Nine Step Methodology Untuk Business Intelegency Pada Pt Bangun Mitra Makmur. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 1(2), 137–146. https://doi.org/10.33365/jatika.v1i2.331

Ardiansyah, D., & Walim, W. (2018). Algoritma c4.5 untuk klasifikasi calon peserta lomba cerdas cermat siswa smp dengan menggunakan aplikasi rapid miner. Jurnal Inkofar, 1(2), 5–12. https://politeknikmeta.ac.id/meta/ojs/index.php/inkofar/article/view/29/45

Indarta, Y., Irfan, D., Muksir, M., Simatupang, W., & Ranuharja, F. (2021). Analisis dan Perancangan Database Menggunakan Model Konseptual Data Warehouse Sistem Manajemen Transaksi Toko Online Haransaf. Edukatif : Jurnal Ilmu Pendidikan, 3(6), 4448–4455. https://doi.org/10.31004/edukatif.v3i6.1477

Kurniawan, Y. I. (2018). Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(4), 455–464. https://doi.org/10.25126/jtiik.201854803

Matondang, M. R., Lubis, M. R., & Tambunan, H. S. (2021). Analisis Data mining dengan Metode C.45 pada Klasifikasi Kenaikan Rata-Rata Volume Perikanan Tangkap. Brahmana : Jurnal Penerapan Kecerdasan Buatan, 2(2), 74–81. https://doi.org/10.30645/brahmana.v2i2.68

Published

2024-07-04

How to Cite

Andi Diah Kuswanto, Said Imam Puro, Jodi Hariyan, Ridho Rafliansyah, Muhammad Rival Aziz, & Pebro Vaulina Rajagukguk. (2024). Analisa Data Shopping Trends Menggunakan Algoritma Klasifikasi Dengan Metode Naive Bayes. Repeater : Publikasi Teknik Informatika Dan Jaringan, 2(3), 119–134. https://doi.org/10.62951/repeater.v2i3.118

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)