Rancang Bangun Deteksi Bentuk Wajah Untuk Menentukan Gaya Rambut Menggunakan Algoritma CNN

Authors

  • Mahardika Yoshi Putra Universitas Muhammadiyah Ponorogo

DOI:

https://doi.org/10.62951/repeater.v2i3.139

Keywords:

Hairstyle, Face shape, CNN (Convolutional Neural Network)

Abstract

In appearance, hair is an important aspect. In this modern era, hairstyles are becoming more and more varied. So, a lot of teenage men have trouble determining a suitable hairstyle. One factor in determining hairstyles is the shape of their faces. Often, teenagers don't match the haircut they've chosen. It can make you feel less confident and feel less in terms of appearance. Because it requires a system to recognize the shape of the face and determine the appropriate hairstyle. The most common method of grouping is the CNN method. In this study, the recommended hairstyles of male hair models and facial shapes detected are Oval, Box, Long Square, and Round. This study has accuracy with an average presentation of 85%.

Downloads

Download data is not yet available.

References

Adityatama, R., & Putra, A. T. (2023). Image classification of human face shapes using convolutional neural network Xception architecture with transfer learning. Recursive Journal of Informatics, 1(2), 102-109. https://doi.org/10.15294/rji.v1i2.70774

Alamsyah, D., & Pratama, D. (2020). Implementasi convolutional neural networks (CNN) untuk klasifikasi ekspresi citra wajah pada FER-2013 dataset. Jurnal Teknologi Informasi, 4(2), 350-355. https://doi.org/10.36294/jurti.v4i2.1714

Anon. (2023). 26 model rambut pria sesuai bentuk wajah, keren semua! All Things Beauty Indonesia. Retrieved July 15, 2024, from https://www.allthingshair.com/id-id/rambut/gaya-rambut-pria/model-rambut-pria-sesuai-bentuk-wajah/

Devi, P. A. R., & Rosyid, H. (2022). Pemaparan materi dasar pengolahan citra digital untuk upgrade wawasan siswa di SMK Dharma Wanita Gresik. Jurnal Abdi Masyarakat Indonesia, 2(4), 1259-1264. https://doi.org/10.54082/jamsi.405

Hans, R. (2023). Model overfitting & underfitting di machine learning. Retrieved July 16, 2024, from https://dqlab.id/model-overfitting-and-underfitting-di-machine-learning

Maulana, I., Khairunisa, N., & Mufidah, R. (2023). Deteksi bentuk wajah menggunakan convolutional neural network (CNN). Jurnal Teknologi Informasi dan Komputer, 7(6).

Pratama, Y. E. (2023). Pengembangan aplikasi pembelajaran mesin untuk identifikasi kemiripan lukisan. KALBISIANA Jurnal Sains, Bisnis dan Teknologi, 9(4), 635-644. https://doi.org/10.53008/kalbisiana.v9i4.826

Sapitri, N. K. E. (2020). Telaah pustaka overfitting pada artificial neural network (ANN).

Widodo, Y. B., Sibuea, S., & Rivaldi, A. (2023). Rancang bangun aplikasi sistem pakar untuk pemilihan model gaya rambut pria menggunakan metode forward chaining. Jurnal Teknologi Informatika dan Komputer, 9(1), 558-573. https://doi.org/10.37012/jtik.v9i1.1622

Published

2024-07-17

How to Cite

Mahardika Yoshi Putra. (2024). Rancang Bangun Deteksi Bentuk Wajah Untuk Menentukan Gaya Rambut Menggunakan Algoritma CNN. Repeater : Publikasi Teknik Informatika Dan Jaringan, 2(3), 206–212. https://doi.org/10.62951/repeater.v2i3.139

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.