Klasifikasi Citra Digital Bumbu dan Rempah Dengan Algoritma Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.62951/repeater.v2i3.81Keywords:
Image classification, Herbs and spices, CNNAbstract
Attention to spices and flavorings among the younger generation is still low. The strategy that can be used to overcome this problem is a programmed and computerized arrangement of spices and flavorings using Convolutional Neural Network (CNN) calculations. In this exploration there are 300 images of spices and flavors which will be characterized into 3 classifications. Namely ginseng, ginger and galangal. Information in each classification is divided into two, namely preparation information and testing information with a proportion of 80%: 20%. The CNN model used in computerized grouping of spice and flavor images is a model with 2 convolutional layers, where the first convolutional layer has 10 channels and the second convolutional layer has 20 channels. Each channel has a 3x3 portion frame. The channel size in the pooling layer is 3x3 and the number of neurons in the secret layer is 10. The actuation capability in the convolutional layer and secret layer is tanh, and the actuation capability in the result layer is softmax. In this model, the accuracy of preparation information is 0.9875 and the loss value is 0.0769. The precision of the test data is 0.85 and the loss value is 0.4773. Meanwhile, testing new information with 3 images for each classification resulted in an accuracy of 88.89%.
Downloads
References
Abhirawa, H., Jondri, & Arifianto, A. (2017). Pengenalan wajah menggunakan convolutional neural network. e-Proceding of Engineering, 4(3), 4907-4916.
Fikriya, Z. A., Irawan, M. I., & Soetrisno. (2017). Implementasi extreme learning machine untuk pengenalan object citra digital. Jurnal Sains dan Seni ITS, 6(1), A18-A23.
Hakim, L. (2015). Rempah dan herba kebun pekarangan rumah masyarakat: Keragaman sumber fitokarma dan wisata kesehatan-kebugaran. Yogyakarta: Diandra Pustaka Indonesia.
Hikmatulloh, E., Lasmanawati, E., & Setiawati, T. (2017). Manfaat pengetahuan bumbu dan rempah pada pengolahan makanan Indonesia siswa SMKN 9 Bandung. Media Pendidikan, Gizi dan Kuliner, 6(1), 42-50.
Hu, F., Xia, G. S., Hu, J., & Zhang, L. (2015). Transferring deep convolutional neural network for scene classification of high-resolution image sensing imagery. Remote Sensing, 14680-14707.
Ilahiyah, S., & Nilogiri, A. (2018). Implementasi deep learning pada identifikasi jenis tumbuhan berdasarkan citra daun menggunakan convolutional neural network. Jurnal Sistem & Teknologi Informasi Indonesia, 3(2), 49-56.
Santoso, A., & Ariyanto, G. (2018). Implementasi deep learning berbasis Keras untuk pengenalan wajah. Jurnal Emitor, 18(01), 15-21.
Warsito, B. (2009). Kapita selekta statistika neural network. Semarang: BP Undip Semarang.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Repeater : Publikasi Teknik Informatika dan Jaringan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.