Analisis Penerapan Machine Learning dan Algoritma Anomali untuk Deteksi Penipuan pada Transaksi Digital

Authors

  • Reyhand Ardhitha Universitas Bina Darma Palembang
  • Revifal Anugerah Universitas Bina Darma Palembang
  • Tata Sutabri Universitas Bina Darma Palembang

DOI:

https://doi.org/10.62951/repeater.v3i1.345

Keywords:

Machine Learning, Fraud Detection, Digital Transactions

Abstract

Fraud in digital transactions has become a serious issue threatening the security and integrity of the fintech and e-commerce sectors. To address this problem, machine learning technology has emerged as an effective solution for automatically detecting anomalies and fraudulent transactions. This study aims to analyze the application of machine learning algorithms, specifically Support Vector Machine (SVM), Random Forest, and Ensemble Learning, in detecting fraud in digital transactions. The research adopts a quantitative approach with experimentation, testing the effectiveness of the three algorithms using a digital transaction dataset consisting of both fraudulent and non-fraudulent transactions. The results show that the Random Forest algorithm performs the best in terms of accuracy and recall, followed by Ensemble Learning, which enhances fraud detection performance by combining multiple prediction models. Meanwhile, SVM demonstrates satisfactory performance but is prone to overfitting issues when handling large and complex datasets. The study also finds that the problem of imbalanced data can affect model accuracy, and data balancing techniques such as oversampling are required to improve fraud detection performance. Overall, the findings suggest that machine learning, particularly Random Forest and Ensemble Learning algorithms, can be relied upon to improve fraud detection in digital transactions. However, challenges such as model interpretability and the need for periodic algorithm updates still need to be addressed to enhance the effectiveness of fraud prevention systems in countering the ever-evolving nature of fraud.

Downloads

Download data is not yet available.

References

Adiwijaya, A. P., & Maulana, W. S. (2023). ANALISIS PEMBUATAN SISTEM ANTIFRAUD PADA STARTUP FINTECH, KHUSUSNYA PEER-TO-PEER LENDING. Jurnal Ilmiah Teknik, 2(3), 69-76.

Caseba, F. L., & Dewayanto, T. (2024). Penerapan artificial intelligence, big data, dan blockchain dalam fintech payment terhadap risiko penipuan komputer (computer fraud risk): A systematic literature review. Diponegoro Journal of Accounting, 13(3).

Eldo, H., Ayuliana, A., Suryadi, D., Chrisnawati, G., & Judijanto, L. (2024). Penggunaan Algoritma Support Vector Machine (SVM) Untuk Deteksi Penipuan pada Transaksi Online. Jurnal Minfo Polgan, 13(2), 1627-1632.

Japit, S., Risyani, Y., Selamat, T., Bombongan, C., & Yuliana, Y. (2024). Deteksi Anomali Transaksi E-Commerce Menggunakan Support Vector Machine Berbasis Data Mining. Jurnal Minfo Polgan, 13(2), 1976-1980.

Judijanto, L., Al-Amin, A. A., & Nurhakim, L. (2024). Implementasi Teknologi Artificial Intelligence dan Machine Learning dalam Praktik Akuntansi dan Audit: Sebuah Revolusi atau Evolusi. COSMOS: Jurnal Ilmu Pendidikan, Ekonomi dan Teknologi, 1(6), 470-483.

Kolbia, U., & Dahliyanti, N. (2024). ANALISIS KECURANGAN DALAM MENGHADAPI PENIPUAN DI SITUS E-COMMERCE MENGGUNAKAN RANDOM FOREST; PENDEKATAN MACHINE LEARNING BERBASIS AI. Jurnal Ilmiah Informatika Komputer, 29(2), 182-196.

Lubis, D. J., & Andri, A. N. R. (2024). Implementasi Algoritma Random Forest Untuk Optimasi Keamanan Autentikasi One-Time Password (OTP). Informatech: Jurnal Ilmiah Informatika dan Komputer, 1(1), 23-29.

Mahya, L., Tarjo, T., Sanusi, Z. M., & Kurniawan, F. A. (2023). Intelligent Automation Of Fraud Detection And Investigation: A Bibliometric Analysis Approach. Jurnal Reviu Akuntansi dan Keuangan, 13(3), 588-613.

Saputra, D. R. K., Via, Y. V., & Sihananto, A. N. (2024). Deteksi Anomali Menggunakan Ensemble Learning Dan Random Oversampling Pada Penipuan Transaksi Keuangan. Jurnal Informatika dan Teknik Elektro Terapan, 12(3).

Valentino, M. R. (2023). Security Analysis Of AI-Based Mobile Application For Fraud. Jurnal Komputer Indonesia, 2(1), 9-18.

Sutabri, Tata. (2012). Analisis Sistem Informasi. Yogyakarta: Penerbit Andi.

Sutabri, Tata dan Napitupulu, Darmawan. (2019). Sistem Informasi Bisnis.

Yogyakarta: Penerbit Andi.

Downloads

Published

2025-01-07

How to Cite

Reyhand Ardhitha, Revifal Anugerah, & Tata Sutabri. (2025). Analisis Penerapan Machine Learning dan Algoritma Anomali untuk Deteksi Penipuan pada Transaksi Digital. Repeater : Publikasi Teknik Informatika Dan Jaringan, 3(1), 80–90. https://doi.org/10.62951/repeater.v3i1.345

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.