Dinamika Sentimen Komunikasi Mahasiswa dan Dosen dengan Pemanfaatan Analisis Pesan Whatsapp Akademis Menggunakan Machine Learning
DOI:
https://doi.org/10.62951/repeater.v3i2.404Keywords:
Sentiment Analysis, Support Vector Machine, and STMIK Kaputama BinjaiAbstract
Communication is the process of exchanging information, ideas, thoughts, and feelings between individuals or groups through the use of words, signs, or actions. This process can take place verbally or non-verbally and involves various media and channels, such as face-to-face conversations, writing, gestures, facial expressions, and digital technology. This research was conducted at STMIK Kaputama Binjai, namely the WhatsApp group between lecturers and students. This study uses the Support Vector Machine (SVM) method. SVM is a type of supervised learning machine learning that requires sample data. Support Vector Machine (SVM) is an algorithm developed by Boser, Guyon, and Vapnik in 1992. Support Vector Machine (SVM) has a concept that is combined with previous computational theories. This method can transform training data into higher dimensions using non-linear patterns. The results of the Support Vector Machine method classification with a total of 16 positive sentiments, 40 neutral sentiments and 71 negative sentiments. Accuracy value 67%, margin error 39%. Positive prediction precision 75%, neutral prediction precision 83% and negative prediction precision 88%..
Downloads
References
Acep Saepulrohman, Sudin Saepudin dan Dudih Gustian, (2019), Analisis
Sentimen Kepuasan Pengguna Aplikasi WhatsApp Menggunakan
Algoritma Naïve Bayes Dan Support Vector Machine, Jurnal: Sistem
Informasi, Universitas Nusa Putra
Agus Setiawan Putra, (2023), Analisis Sentimen Multilingual Menggunakan
Pendekatan Machine Learning, Jurnal: Teknologi Pintar, Vol. 3, No. 11
Ahmad, A. (2020). Media Sosial dan Tantangan Masa Depan Generasi Milenial.
08(02), 134–148.
Arviana, G. N. (2021). Sentiment Analysis, Teknik untuk Pahami Maksud di Balik
Opini Pelanggan. 1 Februarui.
Debi Sintia Amalia dan Ahmad Ari Aldino, (2021), Teks Dan Analisis Sentimen
Pada Chat Grup Whatsapp Menggunakan Long Short Term Memory
(LSTM), Jurnal: Sistem Informasi, Universitas Teknologi Indonesia, Vol.
2, No. 4, E-ISSN: 2746-3699
Detti Purnamasari, Ananda Bayu Aji, Desy Wulandari, Fanka Ari Reza, Milda
Safrila, Nafa Yanda dan Ulfa Hidayanti, (2023), Pengantar Metode
Analisis Sentimen, Jawa Barat: Gunadarma
Herlinawati, N., Yuliani, Y., Faizah, S., Gata, W., & Samudi, S. (2020). Analisis
Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes
dan Support Vector Machine. CESS (Journal of Computer Engineering,
System and Science), 5(2), 293. https://doi.org/10.24114/cess.v5i2.18186
Hilda Kusumahadi, S., Junaedi, H., & Santoso, J. (2019). Klasifikasi Helpdesk
Menggunakan Metode Support Vector Machine. Jurnal Informatika:
Jurnal Pengembangan IT, 4(1), 54–60. https : //doi.org /10.30591/
jpit.v4i1.1125
Indah Alda Sapitri, Yusra dan Muhammad Fikri, (2023), Pengklasifikasian
Sentimen Ulasan Aplikasi Whatsapp Pada Google Play Store
Menggunakan Support Vector Machine, Jurnal: Sains dan Teknologi,
Universitas Islam Negeri Sultan Syarif Kasim Riau, Vol. 6, No. 1, ISSN:
2621-1556
Irwansyah Saputra, D. A. K. (2022). Machine Learning untuk Pemula, Bandung:
Informatika
Lina Kartika Pratiwi, (2023), Peningkatan Akurasi Analisis Sentimen Dengan
Algoritma Machine Learning, Jurnal: Teknologi Pintar, Vol. 3, No. 11
Natasuwarna, A. P. (2020). Seleksi Fitur Support Vector Machine pada Analisis
Sentimen Keberlanjutan Pembelajaran Daring. Techno.Com, 19(4), 437–
448. https://doi.org/10.33633/tc.v19i4.4044
Nur Rofiq dan Sartika Lina Mulani Sitio, (2024), Pengenalan Dasar Analisis Data
Dengan Phyton di Google Colab, Purbalingga: CV. Eureka Media Aksara
Taufiqurrahman, F., Faraby, S. Al, & Purbolaksono, M. D. (2021). Klasifikasi
Teks Multi Label pada Hadis Terjemahan Bahasa Indonesia Menggunakan
Chi Square dan SVM. E-Proceeding of Engineering, 8(5), 10650–10659.
Widayat, W. (2021). Analisis Sentimen Movie Review menggunakan Word2Vec
dan metode LSTM Deep Learning. Jurnal Media Informatika Budidarma,
5(3), 1018. https://doi.org/10.30865/mib.v5i3.3111
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Repeater : Publikasi Teknik Informatika dan Jaringan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.