Dinamika Sentimen Komunikasi Mahasiswa dan Dosen dengan Pemanfaatan Analisis Pesan Whatsapp Akademis Menggunakan Machine Learning

Authors

  • Abdi Prayogi STMIK Kaputama
  • Novriyenny Novriyenny STMIK Kaputama
  • I Gusti Prahmana STMIK Kaputama

DOI:

https://doi.org/10.62951/repeater.v3i2.404

Keywords:

Sentiment Analysis, Support Vector Machine, and STMIK Kaputama Binjai

Abstract

Communication is the process of exchanging information, ideas, thoughts, and feelings between individuals or groups through the use of words, signs, or actions. This process can take place verbally or non-verbally and involves various media and channels, such as face-to-face conversations, writing, gestures, facial expressions, and digital technology. This research was conducted at STMIK Kaputama Binjai, namely the WhatsApp group between lecturers and students. This study uses the Support Vector Machine (SVM) method. SVM is a type of supervised learning machine learning that requires sample data. Support Vector Machine (SVM) is an algorithm developed by Boser, Guyon, and Vapnik in 1992. Support Vector Machine (SVM) has a concept that is combined with previous computational theories. This method can transform training data into higher dimensions using non-linear patterns. The results of the Support Vector Machine method classification with a total of 16 positive sentiments, 40 neutral sentiments and 71 negative sentiments. Accuracy value 67%, margin error 39%. Positive prediction precision 75%, neutral prediction precision 83% and negative prediction precision 88%..

Downloads

Download data is not yet available.

References

Acep Saepulrohman, Sudin Saepudin dan Dudih Gustian, (2019), Analisis

Sentimen Kepuasan Pengguna Aplikasi WhatsApp Menggunakan

Algoritma Naïve Bayes Dan Support Vector Machine, Jurnal: Sistem

Informasi, Universitas Nusa Putra

Agus Setiawan Putra, (2023), Analisis Sentimen Multilingual Menggunakan

Pendekatan Machine Learning, Jurnal: Teknologi Pintar, Vol. 3, No. 11

Ahmad, A. (2020). Media Sosial dan Tantangan Masa Depan Generasi Milenial.

08(02), 134–148.

Arviana, G. N. (2021). Sentiment Analysis, Teknik untuk Pahami Maksud di Balik

Opini Pelanggan. 1 Februarui.

Debi Sintia Amalia dan Ahmad Ari Aldino, (2021), Teks Dan Analisis Sentimen

Pada Chat Grup Whatsapp Menggunakan Long Short Term Memory

(LSTM), Jurnal: Sistem Informasi, Universitas Teknologi Indonesia, Vol.

2, No. 4, E-ISSN: 2746-3699

Detti Purnamasari, Ananda Bayu Aji, Desy Wulandari, Fanka Ari Reza, Milda

Safrila, Nafa Yanda dan Ulfa Hidayanti, (2023), Pengantar Metode

Analisis Sentimen, Jawa Barat: Gunadarma

Herlinawati, N., Yuliani, Y., Faizah, S., Gata, W., & Samudi, S. (2020). Analisis

Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes

dan Support Vector Machine. CESS (Journal of Computer Engineering,

System and Science), 5(2), 293. https://doi.org/10.24114/cess.v5i2.18186

Hilda Kusumahadi, S., Junaedi, H., & Santoso, J. (2019). Klasifikasi Helpdesk

Menggunakan Metode Support Vector Machine. Jurnal Informatika:

Jurnal Pengembangan IT, 4(1), 54–60. https : //doi.org /10.30591/

jpit.v4i1.1125

Indah Alda Sapitri, Yusra dan Muhammad Fikri, (2023), Pengklasifikasian

Sentimen Ulasan Aplikasi Whatsapp Pada Google Play Store

Menggunakan Support Vector Machine, Jurnal: Sains dan Teknologi,

Universitas Islam Negeri Sultan Syarif Kasim Riau, Vol. 6, No. 1, ISSN:

2621-1556

Irwansyah Saputra, D. A. K. (2022). Machine Learning untuk Pemula, Bandung:

Informatika

Lina Kartika Pratiwi, (2023), Peningkatan Akurasi Analisis Sentimen Dengan

Algoritma Machine Learning, Jurnal: Teknologi Pintar, Vol. 3, No. 11

Natasuwarna, A. P. (2020). Seleksi Fitur Support Vector Machine pada Analisis

Sentimen Keberlanjutan Pembelajaran Daring. Techno.Com, 19(4), 437–

448. https://doi.org/10.33633/tc.v19i4.4044

Nur Rofiq dan Sartika Lina Mulani Sitio, (2024), Pengenalan Dasar Analisis Data

Dengan Phyton di Google Colab, Purbalingga: CV. Eureka Media Aksara

Taufiqurrahman, F., Faraby, S. Al, & Purbolaksono, M. D. (2021). Klasifikasi

Teks Multi Label pada Hadis Terjemahan Bahasa Indonesia Menggunakan

Chi Square dan SVM. E-Proceeding of Engineering, 8(5), 10650–10659.

Widayat, W. (2021). Analisis Sentimen Movie Review menggunakan Word2Vec

dan metode LSTM Deep Learning. Jurnal Media Informatika Budidarma,

5(3), 1018. https://doi.org/10.30865/mib.v5i3.3111

Downloads

Published

2025-03-24

How to Cite

Abdi Prayogi, Novriyenny Novriyenny, & I Gusti Prahmana. (2025). Dinamika Sentimen Komunikasi Mahasiswa dan Dosen dengan Pemanfaatan Analisis Pesan Whatsapp Akademis Menggunakan Machine Learning. Repeater : Publikasi Teknik Informatika Dan Jaringan, 3(2), 45–54. https://doi.org/10.62951/repeater.v3i2.404