“Klasifikasi Citra Penyakit Gigi Menggunakan Metode K-Nearest Neighbor”.
DOI:
https://doi.org/10.62951/bridge.v2i4.244Keywords:
Classification, K-Nearest Neighbors, TeethAbstract
Handling of dental disease problems requires that it be handled quickly and correctly, but not all teams of dental experts can carry out treatment quickly due to the lack of a team of dental experts who are in the workplace or hospital 24 hours a day. Apart from that, the public also has very little knowledge of information about dental disease, so that to treat dental disease, people have to consult a dentist. To classify images of dental disease, feature extraction is needed. Feature extraction is taking characteristics of an object that can describe the image. One example of image feature extraction used is Red, Green, Blue (RGB). This feature extraction is often used to identify or classify an image. Dental image data that will be used in the classification process are tooth abrasion, anterior crosbite, cavities and gingivitis. K-Nears Neigbor is the simplest data mining algorithm. The aim of this algorithm is to find the results of the closest distance classification for each object. In determining the distance, the data is initially divided into two parts, namely training data and testing data. After receiving the training data and testing data, the distance from each testing data (Equilidence Distance) to the training data is calculated. The K-Nearest Neighbors method can be applied to classify dental disease based on images of types of dental disease using Matlab software. As a result of the image data training process, 40 image data were input, training results obtained were 100%.
Downloads
References
Amril Mutoi Siregar, A. P. (2016). DATA MINING: Pengolahan data menjadi informasi dengan RapidMiner. CV Kekata Group.
Anita Sindar Ros Maryana Sinaga. (2019). Ekstraksi ciri komunikasi non-verbal Gray Level Co-Occurrence Matrix dan Fuzzy C-Means. CV. Penerbit Qiara Media.
dinkes.jakarta.go.id. (2024). Penyebab, gejala, dan tips mencegah penyakit gigi dan mulut. Retrieved from https://dinkes.jakarta.go.id/berita/read/penyebab-gejala-dan-tips-mencegah-penyakit-gigi-dan-mulut
Faisal, M., Utami, W. S., & Parmica, S. (2023). Implementasi algoritma K-Nearest Neighbor (KNN) dalam memprediksi indeks kemiskinan. Journal Sensi, 9(1), 11–23. https://doi.org/10.33050/sensi.v9i1.2616
Farokhah, L. (2020). Implementasi K-Nearest Neighbor untuk klasifikasi bunga dengan ekstraksi fitur warna RGB. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1129. https://doi.org/10.25126/jtiik.2020722608
Hasran. (2020). Klasifikasi penyakit jantung menggunakan metode K-Nearest Neighbor. Indonesia Journal of Data and Science, 1(1), 6–10. http://bit.ly/datasetcardio
Jepriana, S. H., & I. W. (2020). Konsep algoritme dan aplikasinya dalam bahasa pemrograman C++. CV. Andi Offset.
Maulana, S. C. (2022). Penentuan kualitas sayuran berdasarkan warna dengan penerapan metode K-NN. Jurnal Ilmiah Kaputama (JIKA), 6(1), 30–36.
Nurhayati. (2022). Teknik ensemble learning untuk peningkatan performa akurasi model prediksi (seleksi mahasiswa penerima beasiswa). Pascal Books.
Pulung Nurtantio Andono, T., & Sutojo, M. (2017). Pengolahan citra digital. CV. Andi Offset.
Putra, P., Pardede, M. H., & Syahputra, S. (2022). Analisis metode K-Nearest Neighbour (KNN) dalam klasifikasi data iris bunga. Jurnal Teknik Informatika Kaputama (JTIK), 6(1), 297–305.
Rachmat Destriana, S., Husain, S. M., & Handayani, N. (2021). Diagram UML dalam membuat aplikasi Android Firebase: Studi kasus aplikasi bank sampah. Deepublish Publisher.
rsjd-surakarta.jatengprov.go.id. (2024). Instalasi gigi dan mulut. Retrieved from https://rsjd-surakarta.jatengprov.go.id/instalasi-gigi-dan-mulut/
Siahaan, V. (2020). Pemrograman MATLAB dari nol sampai master untuk pemrosesan citra digital. Balige Publishing.
Umul Hidayah, & Agus Sifaunajah. (2019). Cara mudah memahami algoritma K-Nearest Neighbor studi kasus Visual Basic 6.0. Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas KH. A. Wahab Hasbullah.
Wirayudhana, I. G. (2021). Klasifikasi mutu buah jambu biji Getas Merah berdasarkan tekstur menggunakan Grey Level Co-Occurrence Matrix (GLCM) dengan klasifikasi KNN. Jurnal Indonesia Sosial Teknologi, 2(6), 953–964. https://doi.org/10.36418/jist.v2i6.166
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bridge : Jurnal publikasi Sistem Informasi dan Telekomunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.