Implementasi Association Rule pada Sistem Rekomendasi Peningkatan Hasil Pertanian Menggunakan Metode Apriori

Studi Kasus: Dinas Pertanian dan Pangan Kab. Langkat

Authors

  • Yekolya Anatesya STMIK Kaputama Binjai
  • Achmad Fauzi STMIK Kaputama Binjai
  • Rusmin Saragih STMIK Kaputama Binjai

DOI:

https://doi.org/10.62951/bridge.v2i4.245

Keywords:

Apriori Algorithm, Data Mining, Agricultural Products

Abstract

The rapid development of technology increases the need for effective and efficient information. Information that is not managed properly loses value, especially when large amounts of data are available, making conventional methods no longer adequate to analyze the potential of the data. Therefore, a system capable of analyzing, summarizing, and extracting data into useful information is required. The Department of Agriculture and Food Security, as an agency that handles food security, agriculture, animal husbandry, animal health, and fisheries, is responsible for supporting the increase in agricultural yields to meet the food needs of the population and encourage economic growth. To achieve this goal, the agency needs to utilize technology to process agricultural data quickly and accurately. The system built using the apriori method can analyze data efficiently and provide recommendations for increasing agricultural yields. Based on the test results, a support value of 9% and a confidence of 68% were obtained, with the rule If the crop is Cassava, then the production yield is 6000-8000 tons.

Downloads

Download data is not yet available.

References

Ahmad, N., Krisnanik, E., Rupile. F, J., Muliawati, A., Syamsiyah, N., Cahyono, B. D., Sriyeni, Y., Kristanto, T., Irwanto, I., Guntoro, G. (2022). Analisa & Perancangan Sistem Informasi Berorientasi Objek (Ed.; 1st ed., Vol. 1). Widina.

Arhami, M., & Nasir, M. (2020). Data Mining (R. Indah utami, Ed.; 1st ed.). cv andi offset.

Arliana Nur Kadim, L. (2023). Penerapan Algoritma Apriori Menentukan Korelasi Data Penjualan Pupuk (Studi Kasus : PT. Karunia Rotorindo Tani). Jurnal Manajemen Informatika Jayakarta, 3, 292–301. https://doi.org/10.52362/jmijayakarta.v3i3.1196

Aziz Muslim, M., Prasetiyo, B., Laily Harum Mawarni, E., Juli Herowati, A., Mirqotussa’adah, Hardiyanti Rukmana, S., & Nurzahputra, A. (2019). Data Mining Algoritma C4.5. In Nucl. Phys. (Vol. 13, Issue 1).

Budi Rahardjo, S., Sulistyohati, A., Informatika, T., & Pelita Bangsa, U. (2021). Penerapan Data Mining Untuk Menganalisa Pola Pembelian Sayuran Hidroponik Menggunakan Metode Algoritma Apriori. Journal of Practical Computer Science, 1(2).

Desi, E., Lestari, S., & Pasang, R. (2022). Implementasi Penyusunan Barang Pada Grosir Abadi Dengan Menggunakan Aplikasi Data Mining. Universitas Potensi Utama Jl. KL Yos Sudarso Km, 2(1), 3.

Nuraini, C., Adi Saputro, W., & Helbawanti, O. (2021). Pengantar Ilmu Pertanian (1st ed., Vol. 1). Lembaga Mutiara Hidup Indonesia.

Prasetyo, D. (2017). Mengelola Database Dengan Visual Basic.Net Dan Mysql, Pt.Elex Media Komputindo,Jakarta

Relita Buaton, Zarlis, M., Efendi, S., & Yasin, V. (2019). DATA MINING TIME SERIES (1st ed., Vol. 1). Wade Group.

Riszky, A. R., & Sadikin, M. (2019). Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi Dan Sistem Komputer, 7(3), 103–108. https://doi.org/10.14710/jtsiskom.7.3.2019.103-108

Sanjaya, Wina. (2017). Algoritma & Teknik Pemrograman. Jakarta: Kencana.

Sinaga, D. M., Windarto, A. P., Tambunan, H. S., & Damanik, I. S. (2022). Data Mining Menggunakan Metode Asosiasi Apriori untuk Merekomendasi Pola Obat Pada Puskesmas. Journal of Information System Research (JOSH), 3(2), 143–149. https://doi.org/10.47065/josh.v3i2.1237

Sutedjo, B. S. M., & Michael AN, S. (2018). Algoritma & Teknik Pemrograman. Yogyakarta: ANDI.

Swastika, R., Mukodimah, S., Susanto, F., Muslihudin, M., & Ipnuwati, S. (2023). IMPLEMENTASI DATA MINING (Clastering, Association, Prediction, Estimation, Classification) (1st ed., Vol. 1). CV. Adanu Abimata

Wahyudi, M., Masitha, Risna Saragih, & Solikhun. (2020). Data Mining(2) (J. Simarmata, Ed.; 1st ed.). Yayasan Kita Menulis.

Published

2024-09-18

How to Cite

Yekolya Anatesya, Achmad Fauzi, & Rusmin Saragih. (2024). Implementasi Association Rule pada Sistem Rekomendasi Peningkatan Hasil Pertanian Menggunakan Metode Apriori: Studi Kasus: Dinas Pertanian dan Pangan Kab. Langkat. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(4), 210–232. https://doi.org/10.62951/bridge.v2i4.245

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.