Deteksi Alergen pada Produk Pangan Menggunakan Algoritma Support Vector Machines (SVM)
DOI:
https://doi.org/10.62951/bridge.v3i1.393Keywords:
Allergen, Data Mining, K-Fold Cross Validation, Split Validation, Support Vector MachinesAbstract
Food allergies are medical conditions caused by particular immunological reactions brought on by exposure to certain foods. All age groups can experience food allergies, albeit the prevalence varies between children and adults, with children experiencing this condition more frequently than adults. Find food ingredients or substances that can trigger allergies, often known as allergens. This project attempts to determine whether or not the food includes allergies by applying the SVM data mining method to a public dataset of food goods and allergens that was acquired via Kaggle. High accuracy, effective memory use, and the ability to handle non-normally distributed data are some of the benefits of the SVM method. Data collection is the first step in the research process. Data pre-processing, which includes data transformation, handling missing values, and copy objects, comes next. Validation comes next. Split validation with 90% training data and 10% testing data, 10-fold cross validation, and split validation with an 80%–20% ratio were all compared in this study. The SVM method is applied after the dataset has passed validation, and the confusion matrix is used for the last evaluation step. SVM has an accuracy rate of 97.24% when using 10-fold cross validation, according to the accuracy value produced by the validation process comparison. Split validation yields an accuracy value of 97.50% when the ratio of training data to testing data is 90% to 10%. In contrast, an accuracy rate of 98.75% was achieved by using split validation with a ratio of 80% and 20%.
Downloads
References
Aisah, I. S., Irawan, B., & Suprapti, T. (2023). Algoritma Support Vector Machine (SVM) untuk analisis sentimen ulasan aplikasi Al Qur’an digital. JATI: Jurnal Mahasiswa Teknik Informatika, 7(6), 3759–3765. https://doi.org/10.36040/jati.v7i6.8263
Amna, S. W., Sudipa, I. G. I., Putra, T. A. E., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Heryana, N., Indriyani, T., & Santoso, L. W. (2023). Data mining. PT Global Eksekutif Teknologi.
Ardin, A. (2025, February 17). Tak semua siswa ambil jatah MBG di Labuan Bajo karena alergi-vegetarian. Detik. https://www.detik.com
Asosiasi Institusi Pendidikan Tinggi Vokasi Gizi Indonesia (AIPVOGI). (2025, January 6). Standar gizi dan makanan dalam program makan bergizi gratis tahun 2025. https://aipvogi.org
Assa’ad, A. H. (2024). Implementasi machine learning dengan metode KNN, SVM, dan MLP dalam mendeteksi alergen makanan pada resep makanan [Institut Teknologi Sepuluh Nopember]. http://repository.its.ac.id/id/eprint/110334
Azizah, R. A., Bachtiar, F., & Adinugroho, S. (2022). Klasifikasi kinerja akademik siswa menggunakan neighbor weighted K-nearest neighbor dengan seleksi fitur information gain. JTIIK: Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(3), 605–614. https://doi.org/10.25126/jtiik.2022935751
Azizah, Z., Falihah, A. H., Santoso, B. B. A., Puspitasari, I., & Sahid, M. N. A. (2024). Frequency of food allergy based on a survey of adults in Yogyakarta and Java regions. Majalah Farmaseutik, 20(2), 276–281. https://doi.org/10.22146/farmaseutik.v20i2.85546
Dennis Aprilla C., Donny Aji Baskoro, Ambarwati, L., & Wicaksana, I. W. S. (2013). Belajar data mining dengan Rapid Miner (R. Sanjaya, Ed.). Open Content Model.
DetikBali, T. (2025, February 22). Pengelola dapur bantah 29 siswa di Sumba Timur keracunan setelah santap MBG. Detik. https://www.detik.com
Direktorat Jenderal Pendidikan Anak Usia Dini, Pendidikan Dasar, dan Pendidikan Menengah (2024). Pedoman makan bergizi gratis (MBG) di satuan pendidikan. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. https://aipvogi.org
Direktorat Standardisasi Pangan Olahan. (2019). Pedoman implementasi pelabelan pangan olahan. Deputi Bidang Pengawasan Pangan Olahan, Badan Pengawas Obat dan Makanan Republik Indonesia.
Gori, T., Sunyoto, A., & Fatta, H. Al. (2024). Preprocessing data dan klasifikasi untuk prediksi kinerja akademik siswa. JTIIK: Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(1), 215–224. https://doi.org/10.25126/jtiik.20241118074
Iglesia, E. G. A., Kwan, M., Virkud, Y. V., & Iweala, O. I. (2024). Management of food allergies and food-related anaphylaxis. JAMA, 331(6), 510–521. https://doi.org/10.1001/jama.2023.26857
Institute for Development of Economics and Finance (INDEF). (2024). Efek pengganda program makan bergizi gratis. https://indef.or.id
Irawan, R. N., Hindrayani, K. M., & Idhom, M. (2024). Penerapan cross validation sebagai analisis sentimen pelayanan publik kereta api lokal Daop 8 menggunakan metode multinomial naive bayes. G-Tech: Jurnal Teknologi Terapan, 8(2), 954–963. https://doi.org/10.33379/gtech.v8i2.4117
Miranda, S. (2025, January 13). Hari pertama program MBG di Surabaya, alergi menu tertentu jadi catatan khusus. Ketik.co.id. https://ketik.co.id
Musu, W., Ibrahim, A., & Heriadi. (2021). Pengaruh komposisi data training dan testing terhadap akurasi algoritma C4.5. SISITI: Seminar Sistem Informasi Dan Teknologi Informasi, 10(1), 186–195. https://ejurnal.undipa.ac.id/index.php/sisiti/article/view/802
Muttaqin, W., Widiyanto, W. W., Munsarif, M., Mandias, G. F., Pungus, S. R., Widarman, A., Hapsari, W. K., Hardiyanti, S. A., Fatkhudin, A., Pasnur, B., Anshori, M., Suryani, & Saputra, N. (2023). Pengenalan data mining. Yayasan Kita Menulis.
Narulita, S., & Adi, P. N. (2024). Feature selection information gain pada klasifikasi pasien penyakit jantung (heart disease). JURMIK: Jurnal Rekam Medis Dan Manajemen Informasi Kesehatan, 4(1), 13–19. https://doi.org/10.53416/jurmik.v4i1.240
Narulita, S., Prihati, O., Oktaga, A. T., & Widyantoro, A. E. (2023). Performansi algoritma clustering K-means untuk penentuan status malnutrisi pada balita. Jurnal Informasi, Sains, Dan Teknologi, 6(1), 188–202. https://isaintek.polinef.ac.id/index.php/isaintek/article/view/128
Nedyalkova, M., Vasighi, M., Azmoon, A., Naneva, L., & Simeonov, V. (2023). Sequence-based prediction of plant allergenic proteins: Machine learning classification approach. ACS Omega, 8(4), 3698–3704. https://doi.org/10.1021/acsomega.2c02842
News, T. (2025, January 12). Seorang pelajar tak bisa makan menu MBG karena alasan alergi, begini respons Cak Imin. Liputan6.com. https://www.liputan6.com
Putra, M. Y., & Putri, D. I. (2022). Pemanfaatan algoritma naive bayes dan K-nearest neighbor untuk klasifikasi jurusan siswa kelas XI. Jurnal Tekno Kompak, 16(2), 176–187. https://doi.org/10.33365/jtk.v16i2.2002
Rahayu, P. W., Sudipa, I. G. I., Suryani, S., Surachman, A., Ridwan, A., Darmawiguna, I. G. M., Sutoyo, M. N., Slamet, I., Harlina, S., & Maysanjaya, I. M. D. (2024). Buku ajar data mining. PT Sonpedia Publishing Indonesia. https://www.researchgate.net/publication/377415198_BUKU_AJAR_DATA_MINING
RapidMiner, I. (2024). Split validation (RapidMiner Studio Core). https://docs.rapidminer.com
Sari, K., Palupi, N. S., & Giriwono, P. E. (2021). Allergen sanitation in biscuit production process to reduce egg allergen residu. Journal of Food Technology and Industry, 32(2), 136–147. https://doi.org/10.6066/jtip.2021.32.2.136
Shaukat, H., Sultan, A., & Salahuddin, H. (2024). Enhancing food safety: A machine learning approach for accurate detection and classification of food allergens. Journal of Computing & Biomedical Informatics, Special Is, 1–16. https://jcbi.org/index.php/Main/article/view/474/371
Thet, T. T., Na, J.-C., & Khoo, C. S. G. (2010). Aspect-based sentiment analysis of movie reviews on discussion boards. Sage Journals, 36(6), 823–848. https://doi.org/10.1177/0165551510388123
Wang, L., Niu, D., Zhao, X., Wang, X., Hao, M., & Che, H. (2021). A comparative analysis of novel deep learning and ensemble learning models to predict the allergenicity of food proteins. Foods, 10(809), 1–15. https://doi.org/10.3390/foods10040809
Zhang, J., Lee, D., Jungles, K., Shaltis, D., Najarian, K., Ravikumar, R., Sanders, G., & Gryak, J. (2023). Prediction of oral food challenge outcomes via ensemble learning. Informatics in Medicine Unlocked, 36, 1–10. https://doi.org/10.1016/j.imu.2022.101142
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bridge : Jurnal publikasi Sistem Informasi dan Telekomunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.