Prediksi Pengaruh Kegiatan MBKM terhadap Mahasiswa menggunakan Metode K-Nearest Neighbor

Authors

  • Farida Hanum STMIK Kaputama
  • Yani Maulita STMIK Kaputama
  • I Gusti Prahmana STMIK Kaputama

DOI:

https://doi.org/10.62951/bridge.v2i4.249

Keywords:

MBKM, K-Nearest Neighbor, Prediction, RapidMiner

Abstract

The Merdeka Belajar Kampus Merdeka (MBKM) program provides students the opportunity to study for one semester outside of their major, aiming to develop the soft and hard skills required in the workforce. One key component of this program is internships or practical work, which gives students hands-on experience in the professional world and the chance to build professional networks. This research uses the K-Nearest Neighbor (K-NN) method to predict the impact of MBKM activities on undergraduate students at STMIK Kaputama. Using the RapidMiner application, student data was tested to obtain the accuracy of predicting students' engagement in the MBKM program in the future. The test results show that the K-NN model has an accuracy of 75.34%, indicating that the model is fairly good at predicting the impact of the MBKM program on students.

 

 

Downloads

Download data is not yet available.

References

Amna, S. W., Sudipa, I. G. I., Putra, T. A. E., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Indriyani, T., & Santoso, L. W. (2023). Data mining. In D. Ediana & A. Yanto (Eds.), (1st ed., Vol. 2, Issue 1). PT Global Eksekutif Teknologi.

Aprilla, D. (2013). Belajar data mining dengan RapidMiner. Dennis Aprilia C, 5(4), 1–5.

Gadi, A., Amas, A., Pati, G. K., Ema, F., Sanga, O., Informatika, T., Stella, S., & Sumba, M. (2024). Penerapan K-optimal pada algoritma KNN untuk prediksi kelulusan tepat waktu mahasiswa program studi Teknik Informatika. JESCE (Journal of Electrical and System Control Engineering), 7(2), 92–97. https://doi.org/10.31289/jesce.v6i2.10536

Habibi, R., Prahmana, I. G., Ambarita, I., & Kadim, L. A. N. (2024). Prediction analysis of literacy numeracy and technology adaptation abilities of students who participate in teaching campuses using the KNN algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(2), 590–594. https://doi.org/10.59934/jaiea.v3i2.437

Munazilin, A., & Santoso, F. (2021). Logika dan algoritma pemrograman. (1st ed., Vol. 1, Issue 1). CV. AA RIZKY.

Muslim, M. A., Prasetiyo, B., Harum, E. L., Juli, H. A., Mirqotussa’adah, H. R. S., & Nurzahputra, A. (2019). Data mining algoritma C4.5 (E. Listiana & N. Cahyani, Eds.; 1st ed.). Inkom Unmes.

Permana, A. A., S, W., Santoso, L. W., Wibowo, G. W. N., Wardhani, A. K., Rahmaddeni, A. J., Yuliastuti, G. E., Elisawati, R. R., & Abdurrasyid. (2023). Machine learning. In A. Yanto (Ed.), PT Global Eksekutif Teknologi (1st ed., Vol. 1, Issue 13). PT Global Eksekutif Teknologi.

Purwaningsih, E., & Nurelasari, E. (2021). Penerapan K-nearest neighbor untuk klasifikasi tingkat kelulusan pada siswa. Syntax: Jurnal Informatika, 10(01), 46–56.

Sakarinto, W., & Beny, B. (2021). Panduan implementasi kebijakan merdeka belajar kampus merdeka (MBKM) (1st ed., Vol. 1, Issue 1). Direktorat Pendidikan Tinggi Vokasi dan Profesi Direktorat Jenderal Pendidikan Vokasi Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi.

Suryadi, L., Ngajiyanto, N., Pratiwi, N. E., Ardhy, F., & Riswanto, P. (2022). Penerapan data mining prediksi penjualan mebel terlaris menggunakan metode K-nearest neighbor (K-NN): Studi kasus Toko Zerita Meubel. JUSIM (Jurnal Sistem Informasi Musirawas), 7(2). https://doi.org/10.32767/jusim.v7i2.1697

Yunus, M., & Pratiwi, N. K. A. (2023). Prediksi status gizi balita dengan algoritma K-nearest neighbor (KNN) di Puskemas Cakranegara. JTIM: Jurnal Teknologi Informasi Dan Multimedia, 4(4), 221–231. https://doi.org/10.35746/jtim.v4i4.328

Published

2024-09-18

How to Cite

Farida Hanum, Yani Maulita, & I Gusti Prahmana. (2024). Prediksi Pengaruh Kegiatan MBKM terhadap Mahasiswa menggunakan Metode K-Nearest Neighbor . Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(4), 250–268. https://doi.org/10.62951/bridge.v2i4.249

Most read articles by the same author(s)