Prediksi Pengaruh Kegiatan MBKM terhadap Mahasiswa menggunakan Metode K-Nearest Neighbor
DOI:
https://doi.org/10.62951/bridge.v2i4.249Keywords:
MBKM, K-Nearest Neighbor, Prediction, RapidMinerAbstract
The Merdeka Belajar Kampus Merdeka (MBKM) program provides students the opportunity to study for one semester outside of their major, aiming to develop the soft and hard skills required in the workforce. One key component of this program is internships or practical work, which gives students hands-on experience in the professional world and the chance to build professional networks. This research uses the K-Nearest Neighbor (K-NN) method to predict the impact of MBKM activities on undergraduate students at STMIK Kaputama. Using the RapidMiner application, student data was tested to obtain the accuracy of predicting students' engagement in the MBKM program in the future. The test results show that the K-NN model has an accuracy of 75.34%, indicating that the model is fairly good at predicting the impact of the MBKM program on students.
Downloads
References
Amna, S. W., Sudipa, I. G. I., Putra, T. A. E., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Indriyani, T., & Santoso, L. W. (2023). Data mining. In D. Ediana & A. Yanto (Eds.), (1st ed., Vol. 2, Issue 1). PT Global Eksekutif Teknologi.
Aprilla, D. (2013). Belajar data mining dengan RapidMiner. Dennis Aprilia C, 5(4), 1–5.
Gadi, A., Amas, A., Pati, G. K., Ema, F., Sanga, O., Informatika, T., Stella, S., & Sumba, M. (2024). Penerapan K-optimal pada algoritma KNN untuk prediksi kelulusan tepat waktu mahasiswa program studi Teknik Informatika. JESCE (Journal of Electrical and System Control Engineering), 7(2), 92–97. https://doi.org/10.31289/jesce.v6i2.10536
Habibi, R., Prahmana, I. G., Ambarita, I., & Kadim, L. A. N. (2024). Prediction analysis of literacy numeracy and technology adaptation abilities of students who participate in teaching campuses using the KNN algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(2), 590–594. https://doi.org/10.59934/jaiea.v3i2.437
Munazilin, A., & Santoso, F. (2021). Logika dan algoritma pemrograman. (1st ed., Vol. 1, Issue 1). CV. AA RIZKY.
Muslim, M. A., Prasetiyo, B., Harum, E. L., Juli, H. A., Mirqotussa’adah, H. R. S., & Nurzahputra, A. (2019). Data mining algoritma C4.5 (E. Listiana & N. Cahyani, Eds.; 1st ed.). Inkom Unmes.
Permana, A. A., S, W., Santoso, L. W., Wibowo, G. W. N., Wardhani, A. K., Rahmaddeni, A. J., Yuliastuti, G. E., Elisawati, R. R., & Abdurrasyid. (2023). Machine learning. In A. Yanto (Ed.), PT Global Eksekutif Teknologi (1st ed., Vol. 1, Issue 13). PT Global Eksekutif Teknologi.
Purwaningsih, E., & Nurelasari, E. (2021). Penerapan K-nearest neighbor untuk klasifikasi tingkat kelulusan pada siswa. Syntax: Jurnal Informatika, 10(01), 46–56.
Sakarinto, W., & Beny, B. (2021). Panduan implementasi kebijakan merdeka belajar kampus merdeka (MBKM) (1st ed., Vol. 1, Issue 1). Direktorat Pendidikan Tinggi Vokasi dan Profesi Direktorat Jenderal Pendidikan Vokasi Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi.
Suryadi, L., Ngajiyanto, N., Pratiwi, N. E., Ardhy, F., & Riswanto, P. (2022). Penerapan data mining prediksi penjualan mebel terlaris menggunakan metode K-nearest neighbor (K-NN): Studi kasus Toko Zerita Meubel. JUSIM (Jurnal Sistem Informasi Musirawas), 7(2). https://doi.org/10.32767/jusim.v7i2.1697
Yunus, M., & Pratiwi, N. K. A. (2023). Prediksi status gizi balita dengan algoritma K-nearest neighbor (KNN) di Puskemas Cakranegara. JTIM: Jurnal Teknologi Informasi Dan Multimedia, 4(4), 221–231. https://doi.org/10.35746/jtim.v4i4.328
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bridge : Jurnal publikasi Sistem Informasi dan Telekomunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.