Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM
DOI:
https://doi.org/10.62951/modem.v2i3.112Keywords:
Sentiment, rohingya, Lexicon, InSet VADER, SVMAbstract
Rohingya in Indonesia has become trending conversation on social media. Sentiment analysis can get public responds. Big data makes the problem time efficiency labeling process, therefore the lexicon dictionary is needed for the labeling process. Data is growing and circulating very rapidly so it takes a fast and efficient time. Although it is fast and makes it easier to solve problems, it is still necessary to question the accuracy produced when using the lexicon labeling. A comparison of the labeling process between the InSet lexicon and the VADER lexicon was conducted to determine the accuracy of the labeling. It was done by combining lexicon with machine learning method of support vector machine and TF-IDF weighting and accuracy result calculated using confusion marix. Data from social media X as many as 9117 lines and labeled with InSet lexicon result 5241 negative sentiments, 1369 positive, and 521 neutral. Then the labeling results with VADER produced 2749 positive, 2523 negative, and 1881 neutral. After labeled, processed SVM and calculated accuracy with results of InSet lexicon accuracy having an average of 85.8% while the VADER SVM lexicon has an average of 82.65%.
Downloads
References
Arya, V., Mishra, A. K., & González-Briones, A. (2022). Sentiments analysis of covid-19 vaccine tweets using machine learning and vader lexicon method. Advances in Distributed Computing and Artificial Intelligence Journal, 11(4), 507–518. https://doi.org/10.14201/adcaij.27349
Baiq Nurul Azmi, Arief Hermawan, & Donny Avianto. (2023). Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(4), 281–290. https://doi.org/10.35746/jtim.v4i4.298
Biswas, S., Young, K., & Griffith, J. (2023). A Comparison of Automatic Labelling Approaches for Sentiment Analysis. https://www.researchgate.net/publication/370580498
Borg, A., & Boldt, M. (2020). Using VADER sentiment and SVM for predicting customer response sentiment. Expert Systems with Applications, 162. https://doi.org/10.1016/j.eswa.2020.113746
Chan, J. Y. Le, Bea, K. T., Leow, S. M. H., Phoong, S. W., & Cheng, W. K. (2023). State of the art: a review of sentiment analysis based on sequential transfer learning. Artificial Intelligence Review, 56(1), 749–780. https://doi.org/10.1007/s10462-022-10183-8
D’Aniello, G., Gaeta, M., & La Rocca, I. (2022). KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis. Artificial Intelligence Review, 55(7), 5543–5574. https://doi.org/10.1007/s10462-021-10134-9
El, I., Li, N. R., & Murphy, M. J. (n.d.). Theory and Applications Machine Learning in Radiation Oncology.
Geofany, N., & Liza, R. (n.d.). Klasifikasi Sentimen Tweet Pada Twitter Terhadap Pembelajaran E-Learning Menggunakan Metode k-Nearest Neighbor.
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
Gupta, N., & Agrawal, R. (2020). Application and techniques of opinion mining. In Hybrid Computational Intelligence (pp. 1–23). Elsevier. https://doi.org/10.1016/B978-0-12-818699-2.00001-9
Hutto, C. J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. http://sentic.net/
Isnan, M., Elwirehardja, G. N., & Pardamean, B. (2023). Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model. Procedia Computer Science, 227, 168–175. https://doi.org/10.1016/j.procs.2023.10.514
Karami, A., Lundy, M., Webb, F., & Dwivedi, Y. K. (2020). Twitter and Research: A Systematic Literature Review Through Text Mining. IEEE Access, 8, 67698–67717. https://doi.org/10.1109/ACCESS.2020.2983656
Koto, F., & Rahmaningtyas, G. Y. (2017). Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs. 2017 International Conference on Asian Language Processing (IALP), 391–394. https://doi.org/10.1109/IALP.2017.8300625
Machová, K., Mikula, M., Gao, X., & Mach, M. (2020). Lexicon-based sentiment analysis using particle swarm optimization. Electronics (Switzerland), 9(8), 1–22. https://doi.org/10.3390/electronics9081317
Muhammadi, R. H., Laksana, T. G., & Arifa, A. B. (2022). Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis. https://github.com/evanmartua34/
Musfiroh, D., Khaira, U., Eko, P., Utomo, P., Suratno, T., Studi, P., Informasi, S., Sains, F., & Teknologi, D. (2021). Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon. 1, 24–33.
Tabassum, A., & Patil, R. R. (2020). A Survey on Text Pre-Processing & Feature Extraction Techniques in Natural Language Processing. International Research Journal of Engineering and Technology. www.irjet.net
Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1
Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335–4385. https://doi.org/10.1007/s10462-019-09794-5
Zulkarnaini. (2023). Ratusan Pengungsi Rohingya Kembali Masuk Aceh.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Modem : Jurnal Informatika dan Sains Teknologi.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.