Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM

Authors

  • Muhammad Fernanda Naufal Fathoni Universitas Pembangunan Nasional Veteran Jawa Timur
  • Eva Yulia Puspaningrum Universitas Pembangunan Nasional Veteran Jawa Timur
  • Andreas Nugroho Sihananto Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.62951/modem.v2i3.112

Keywords:

Sentiment, rohingya, Lexicon, InSet VADER, SVM

Abstract

Rohingya in Indonesia has become trending conversation on social media. Sentiment analysis can get public responds. Big data makes the problem time efficiency labeling process, therefore the lexicon dictionary is needed for the labeling process. Data is growing and circulating very rapidly so it takes a fast and efficient time. Although it is fast and makes it easier to solve problems, it is still necessary to question the accuracy produced when using the lexicon labeling. A comparison of the labeling process between the InSet lexicon and the VADER lexicon was conducted to determine the accuracy of the labeling. It was done by combining lexicon with machine learning method of support vector machine and TF-IDF weighting and accuracy result calculated using confusion marix. Data from social media X as many as 9117 lines and labeled with InSet lexicon result 5241 negative sentiments, 1369 positive, and 521 neutral. Then the labeling results with VADER produced 2749 positive, 2523 negative, and 1881 neutral. After labeled, processed SVM and calculated accuracy with results of InSet lexicon accuracy having an average of 85.8% while the VADER SVM lexicon has an average of 82.65%.

 

Downloads

Download data is not yet available.

References

Arya, V., Mishra, A. K., & González-Briones, A. (2022). Sentiments analysis of covid-19 vaccine tweets using machine learning and vader lexicon method. Advances in Distributed Computing and Artificial Intelligence Journal, 11(4), 507–518. https://doi.org/10.14201/adcaij.27349

Baiq Nurul Azmi, Arief Hermawan, & Donny Avianto. (2023). Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(4), 281–290. https://doi.org/10.35746/jtim.v4i4.298

Biswas, S., Young, K., & Griffith, J. (2023). A Comparison of Automatic Labelling Approaches for Sentiment Analysis. https://www.researchgate.net/publication/370580498

Borg, A., & Boldt, M. (2020). Using VADER sentiment and SVM for predicting customer response sentiment. Expert Systems with Applications, 162. https://doi.org/10.1016/j.eswa.2020.113746

Chan, J. Y. Le, Bea, K. T., Leow, S. M. H., Phoong, S. W., & Cheng, W. K. (2023). State of the art: a review of sentiment analysis based on sequential transfer learning. Artificial Intelligence Review, 56(1), 749–780. https://doi.org/10.1007/s10462-022-10183-8

D’Aniello, G., Gaeta, M., & La Rocca, I. (2022). KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis. Artificial Intelligence Review, 55(7), 5543–5574. https://doi.org/10.1007/s10462-021-10134-9

El, I., Li, N. R., & Murphy, M. J. (n.d.). Theory and Applications Machine Learning in Radiation Oncology.

Geofany, N., & Liza, R. (n.d.). Klasifikasi Sentimen Tweet Pada Twitter Terhadap Pembelajaran E-Learning Menggunakan Metode k-Nearest Neighbor.

Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679

Gupta, N., & Agrawal, R. (2020). Application and techniques of opinion mining. In Hybrid Computational Intelligence (pp. 1–23). Elsevier. https://doi.org/10.1016/B978-0-12-818699-2.00001-9

Hutto, C. J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. http://sentic.net/

Isnan, M., Elwirehardja, G. N., & Pardamean, B. (2023). Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model. Procedia Computer Science, 227, 168–175. https://doi.org/10.1016/j.procs.2023.10.514

Karami, A., Lundy, M., Webb, F., & Dwivedi, Y. K. (2020). Twitter and Research: A Systematic Literature Review Through Text Mining. IEEE Access, 8, 67698–67717. https://doi.org/10.1109/ACCESS.2020.2983656

Koto, F., & Rahmaningtyas, G. Y. (2017). Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs. 2017 International Conference on Asian Language Processing (IALP), 391–394. https://doi.org/10.1109/IALP.2017.8300625

Machová, K., Mikula, M., Gao, X., & Mach, M. (2020). Lexicon-based sentiment analysis using particle swarm optimization. Electronics (Switzerland), 9(8), 1–22. https://doi.org/10.3390/electronics9081317

Muhammadi, R. H., Laksana, T. G., & Arifa, A. B. (2022). Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis. https://github.com/evanmartua34/

Musfiroh, D., Khaira, U., Eko, P., Utomo, P., Suratno, T., Studi, P., Informasi, S., Sains, F., & Teknologi, D. (2021). Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon. 1, 24–33.

Tabassum, A., & Patil, R. R. (2020). A Survey on Text Pre-Processing & Feature Extraction Techniques in Natural Language Processing. International Research Journal of Engineering and Technology. www.irjet.net

Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1

Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335–4385. https://doi.org/10.1007/s10462-019-09794-5

Zulkarnaini. (2023). Ratusan Pengungsi Rohingya Kembali Masuk Aceh.

Published

2024-07-01

How to Cite

Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, & Andreas Nugroho Sihananto. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Modem : Jurnal Informatika Dan Sains Teknologi., 2(3), 62–76. https://doi.org/10.62951/modem.v2i3.112