Analisis Pola Pembelian Pelanggan Menggunakan Algoritma Squeezer, Apriori dan FP-Growth Pada Toko Bangunan
DOI:
https://doi.org/10.62951/modem.v2i3.153Keywords:
Apriori, Association Rules, Clustering, FP-Growth, SqueezerAbstract
To compete with other stores, store owners need to design various strategies, one of which is understanding customer purchase patterns. This article examines the Squeezer algorithm and compares the performance of the Apriori and FP-Growth algorithms in forming customer purchase association patterns that can be used as a reference for store owners in planning sales strategies. The data mining process was carried out using Association Rules and Clustering methods. A total of 1256 sales transaction data samples were analyzed to understand the association patterns produced by each method. Based on the test results with a minimum support of 0.2 and a confidence of 0.6, the Apriori algorithm produced 194 association rules with a total rule strength of 1.16. Meanwhile, the FP-Growth algorithm produced 52 association rules with the same total rule strength of 1.16. The Clustering Method resulted in 7 clusters with a similarity value of 0.06322. After comparison, the FP-Growth algorithm proved to have better performance in generating association rules compared to the Apriori algorithm.
Downloads
References
Aditya, R., Defit, S., & Nurcahyo, G. W. (2020). Prediksi tingkat ketersediaan stock sembako menggunakan algoritma FP-growth dalam meningkatkan penjualan. Jurnal Informatika Ekonomi Bisnis, 2, 67–73.
Fikri Fajri, A. (2016). Implementasi algoritma Apriori dalam menetukan program studi yang diambil mahasiswa. Jurnal Iptek Terapan, 10(2), 81–85.
Firmansyah, F., & Yulianto, A. (2021). Market basket analysis for books sales promotion using FP Growth algorithm, case study: Gramedia Matraman Jakarta. Journal of Informatics and Telecommunication Engineering, 4(2), 383-392.
Ghozali, M. I., Ehwan, R. Z., & Sugiharto, W. H. (2017). Analisa pola belanja menggunakan algoritma FP Growth, Self Organizing Map (SOM) dan K Medoids. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 8(1), 317-326.
Gultom, D. K., Arif, M., & Muhammad Fahmi. (2020). Determinasi kepuasan pelanggan terhadap loyalitas pelanggan melalui kepercayaan dedek. MANEGGGIO: Jurnal Ilmiah Magister Manajemen, 3(2), 273–282.
Ikhwan, A., Nofriansyah, D., & Sriani. (2015). Penerapan data mining dengan algoritma FP-growth untuk mendukung strategi promosi pendidikan (Studi Kasus Kampus STMIK Triguna Dharma). Jurnal Ilmiah SAINTIKOM, 14(3), 211-226.
Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.).
Mantik, J., Nababan, A. A., Khairi, M., & Harahap, B. S. (2022). Implementation of K-Nearest Neighbors (KNN) algorithm in classification of data water quality. Jurnal Mantik, 6(1), 30–35.
Rerung, R. R. (2018). Penerapan data mining dengan memanfaatkan metode association rule untuk promosi produk. Jurnal Teknologi Rekayasa, 3(1), 89.
Wang, H., Bin, G., & Zheng, Y. (2021). Research on parallelization of Apriori algorithm in association rule mining. Procedia Computer Science, 183, 641-647.
Zengyou, H., Xiaofei, X., & Shengchun, D. (2002). Squeezer: An efficient algorithm for clustering categorical data. Structure, 17(5).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Modem : Jurnal Informatika dan Sains Teknologi.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.