Implementasi Metode CNN Dan K-Nearest Neighbor Untuk Klasifikasi Tingkat Kematangan Tanaman Cabai Rawit
DOI:
https://doi.org/10.62951/modem.v2i3.131Keywords:
Cayenne, Pepper, Classification, CNN, KNN, CNN-KNNAbstract
The process of identifying the ripeness level of cayenne peppers is an important step in cultivation and post-harvest handling. Dependence on the quality factors of farmers, such as visual diversity and differences in ripeness perception, results in subjective harvest outcomes. This manual process is also prone to inconsistent results, as humans have time limitations, fatigue, and sometimes lack concentration when sorting for long periods. To minimize these issues, technological intervention is needed to mechanically classify the ripeness level of cayenne peppers. This research aims to develop a classification model for the maturity level of cayenne pepper plants. This research proposes the use of the CNN method for feature extraction and KNN for data classification based on the features extracted by CNN. From the test scenarios carried out, the classification carried out by KNN based on CNN feature extraction got the best accuracy of 99.33%, while the CNN classification model got the best accuracy of 87.33%.
Downloads
References
Ab-Wahab, M.N., et al. (2021). Efficientnet-Lite and Hybrid CNN-KNN Implementation for Facial Expression Recognition on Raspberry Pi. IEEE Access, 9, 134065–134080. https://doi.org/10.1109/ACCESS.2021.3113337
Ahmad, K.A., et al. (2020). Classification of Starfruit Ripeness using Neural Network Technique. Proceedings - 10th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2020, August, 163–168. https://doi.org/10.1109/ICCSCE50387.2020.9204929
Ambarwari, A., Adrian, Q.J., & Herdiyeni, Y. (2020). Analysis of the Effect of Data Scaling on the Performance of the Machine Learning Algorithm for Plant Identification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1), 117–122. https://doi.org/10.29207/resti.v4i1.1517
Anshori, L., Putri, R. R. M., & Tibyani. (2018). Implementasi Metode K-Nearest Neighbor untuk Rekomendasi Keminatan Studi (Studi Kasus : Jurusan Teknik Informatika Universitas Brawijaya). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK), 2(7), 2745–2753. https://www.researchgate.net/publication/321097020_Implementasi_Metode_K-Nearest_Neighbor_untuk_Rekomendasi_Keminatan_Studi_Studi_Kasus_Jurusan_Teknik_Informatika_Universitas_Brawijaya
Aziz, M. A., et al. (2021). Chili Ripeness Grading Simulation Using Machine Learning Approach. 2021 IEEE International Conference on Computing, ICOCO 2021, 253–258. https://doi.org/10.1109/ICOCO53166.2021.9673572
Cahyaputra, H. R., & Rahmadewi, R. (2024). KLASIFIKASI TINGKAT KEMATANGAN BUAH PAPRIKA MENGGUNAKAN METODE K-NEAREST NEIGHBOR BERDASARKAN WARNA RGB MELALUI APLIKASI MATLAB. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 9(1), 242–249. https://doi.org/10.29100/jipi.v9i1.4440
Firmansyah, A., et al. (2023). Sistem Absensi Mahasiswa Menggunakan Face Recognition Dengan Algoritma CNN. Jurnal AI Dan SPK : Jurnal Artificial Inteligent Dan Sistem Penunjang Keputusan, 1(4), 250–258.
Fitri, Z.E., et al. (2020). Penentuan Tingkat Kematangan Cabe Rawit (Capsicum frutescens L.) Berdasarkan Gray Level Co-Occurrence Matrix. Jurnal Teknologi Informasi Dan Terapan, 7(1), 1–5. https://doi.org/10.25047/jtit.v7i1.121
Karki, S., et al. (2023). Classification of strawberry ripeness stages using machine learning algorithms and colour spaces. Horticulture Environment and Biotechnology, 0123456789. https://doi.org/10.1007/s13580-023-00559-2
Kaswar, A.B., Adiba, F., & Andayani, D.D. (2023). Sistem Klasifikasi Tingkat Kematangan Buah Cabai Katokkon Berdasarkan Fitur Warna LAB Menggunakan Artificial Neural Network Backpropagation. 4(November), 149–157.
Kurniawan, D., et al. (2022). Comparison of Euclidean Distance, Camberra Distance, and Chebychev Distance in K-Means Algorithm Based on Dbi Evaluation. Jurnal Mantik, 5(36), 2830–2838.
Liantoni, F., & Annisa, F. N. (2018). Fuzzy K-Nearest Neighbor Pada Klasifikasi Kematangan Cabai Berdasarkan Fitur Hsv Citra. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 3(2), 101–108. https://doi.org/10.29100/jipi.v3i2.851
Liu, T., et al. (2015). Implementation of Training Convolutional Neural Networks. http://arxiv.org/abs/1506.01195
Mputu, H.S., Abdel-mawgood, A., & Shimada, A. (2024). Tomato Quality Classification Based on Transfer Learning Feature Extraction and Machine Learning Algorithm Classifiers. IEEE Access, 12(January), 8283–8295. https://doi.org/10.1109/ACCESS.2024.3352745
Nugroho, W., Isnanto, R. R., & Rochim, A. F. (2023). Comparison of Mycobacterium Tuberculosis Image Detection Accuracy Using CNN and Combination CNN-KNN. JURNAL RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(158), 80–86.
Pratama, R.R. (2020). Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 19(2), 302–311. https://doi.org/10.30812/matrik.v19i2.688
Saragih, R.E., & Emanuel, A.W.R. (2021). Banana Ripeness Classification Based on Deep Learning using Convolutional Neural Network. 3rd 2021 East Indonesia Conference on Computer and Information Technology, EIConCIT 2021, 85–89. https://doi.org/10.1109/EIConCIT50028.2021.9431928
Sejuti, Z.A., & Islam, M.S. (2023). A hybrid CNN–KNN approach for identification of COVID-19 with 5-fold cross validation. Sensors International, 4(January), 100229. https://doi.org/10.1016/j.sintl.2023.100229
Sri, M.K., Saikrishna, K., & Kumar, V. V. (2020). Classification of Ripening of Banana Fruit Using Convolutional Neural Networks. SSRN Electronic Journal, 1–6. https://doi.org/10.2139/ssrn.3558355
Suha, S.A., & Sanam, T.F. (2022). A deep convolutional neural network-based approach for detecting burn severity from skin burn images. Machine Learning with Applications, 9(April), 100371. https://doi.org/10.1016/j.mlwa.2022.100371
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Modem : Jurnal Informatika dan Sains Teknologi.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.