Sistem Pendeteksi Penyakit Kanker Kulit Menggunakan Convolutional Neural Network Arsitektur YOLOv8 Berbasis Website

Authors

  • Egga Naufal Daffa Tanadi Universitas Pembangunan Nasional Veteran Jawa Timur
  • Dhian Satria Yudha Kartika Universitas Pembangunan Nasional Veteran Jawa Timur
  • Abdul Rezha Efrat Najaf Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.62951/repeater.v2i3.124

Keywords:

Skin Cancer, YOLOv8, CNN, Skin Cancer Detection Application, Roboflow

Abstract

Skin cancer has high incidence and fatality rates, making accurate and rapid detection crucial. This study developed a web-based skin cancer detection system using YOLOv8. The model detects seven types of skin cancer using a dataset of 17.366 annotated images. Methods included data collection, pre-processing, augmentation, model training, and performance evaluation using precision, recall, and mean Average Precision (mAP). Results show that the YOLOv8 model achieved a precision of 0.975 and a recall of 0.969. Evaluation with a confusion matrix demonstrated strong detection capabilities. A web interface was developed to allow users to upload images and view detection results in real-time. The YOLOv8-based skin cancer detection system provides accurate results and can be used as a tool for early diagnosis.

 

 

Downloads

Download data is not yet available.

References

Cholissodin, I., Sutrisno, Soebroto, A. A., Hasanah, U., & Febiola, Y. I. (2020). AI, Machine Learning, & Deep Learning (Teori & Implementasi).

Diana, R., Warni, H., & Sutabri, T. (2017). Penggunaan Teknologi Machine Learning untuk Pelayanan Monitoring Kegiatan Belajar Mengajar pada SMK Bina Sriwijaya Palembang. Jurnal Teknik Informatika, 5(1), 41–50. https://jurnal.stmik-dci.ac.id/index.php/jutekin/article/view/709/630

Indonesia Cancer Care Community. (n.d.). SEKILAS KANKER KULIT. Retrieved from https://iccc.id/sekilas-kanker-kulit

Nurrlitasari, D. A., Magdalena, R., & Fu’adah, R. Y. N. (2022). Analisis Performansi Sistem Klasifikasi Kanker Kulit Menggunakan Convolutional Neural Network. Journal of Electrical and System Control Engineering, 5(2), 91–99.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779–788). https://doi.org/10.1109/CVPR.2016.91

Somvanshi, M., Chavan, P., Tambade, S., & Shinde, S. (2016). A review of machine learning techniques using decision tree and support vector machine. Retrieved from https://doi.org/10.1109/ICCUBEA.2016.7860040

Tarisa, R. E. D., Rustam, R., & Elmatris, E. (2022). Hubungan Jenis Pekerjaan dengan Kanker Kulit di RSUP Dr. M. Djamil Padang Tahun 2015 - 2020. Jurnal Ilmu Kesehatan Indonesia, 3(1), 67–73. https://doi.org/10.25077/jikesi.v3i1.739

The ASCO Post. (2023). Nonmelanoma Skin Cancers May Have Higher Mortality Rate Than Melanoma. Retrieved from https://ascopost.com/news/october-2023/nonmelanoma-skin-cancers-may-have-higher-mortality-rate-than-melanoma/

Published

2024-07-09

How to Cite

Egga Naufal Daffa Tanadi, Dhian Satria Yudha Kartika, & Abdul Rezha Efrat Najaf. (2024). Sistem Pendeteksi Penyakit Kanker Kulit Menggunakan Convolutional Neural Network Arsitektur YOLOv8 Berbasis Website. Repeater : Publikasi Teknik Informatika Dan Jaringan, 2(3), 166–177. https://doi.org/10.62951/repeater.v2i3.124

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.