Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film
DOI:
https://doi.org/10.62951/repeater.v2i3.140Keywords:
Item Based Collaborative Filtering, Recommendations, Film AnalysisAbstract
Item-based collaborative filtering is a popular technique in recommendation systems that aims to provide suggestions for films to watch or services to users based on similarities between items. In this approach, the similarity between items is calculated using metrics such as cosine similarity, allowing the prediction of user preferences for items that have never been rated. This research implements Item-based collaborative filtering using datasets from Kaggle. Experimental results show that the resulting model is able to provide recommendations with significant improvements in evaluation metrics such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of 3.05 and 3.26. This shows that the smaller the value, the better.
Downloads
References
Bator, R. J., Bryan, A. D., & Schultz, P. W. (2011). Who gives a hoot?: Intercept surveys of litterers and disposers. Environment and Behavior, 43(3), 295–315. https://doi.org/10.1177/0013916509356884
Guo, J., Deng, J., Ran, X., Wang, Y., & Jin, H. (2021). An efficient and accurate recommendation strategy using degree classification criteria for item-based collaborative filtering. Expert Syst. Appl., 164, 113756. https://doi.org/10.1016/j.eswa.2020.113756
Hidayati, S. N. (2016). Pengaruh pendekatan keras dan lunak pemimpin organisasi terhadap kepuasan kerja dan potensi mogok kerja karyawan. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(2), 57-66. http://dx.doi.org/10.30588/SOSHUMDIK.v5i2.164
Indriawan, W., Gufroni, A. I., & Informatika, J. F. T. U. S. T. (2020). Sistem rekomendasi penjualan produk pertanian menggunakan metode item based collaborative filtering. J. Siliwangi, 6(2).
Jepriana, I. W. (2018). Algoritme genetika untuk mengurangi galat prediksi metode item-based collaborative filtering. 2001, 1–7.
Jepriana, W., & Hanief, S. (2020). Analisis dan implementasi metode item-based collaborative filtering untuk sistem rekomendasi konsentrasi di STMIK STIKOM Bali. Janapati, 9(2), 171–180.
Johansson, P. (2004). Design and development of recommender dialogue systems. Institutionen för datavetenskap.
Nassar, N., Jafar, A., & Rahhal, Y. (2020). A novel deep multi-criteria collaborative filtering model for recommendation system. Knowledge-Based Syst., 187. https://doi.org/10.1016/j.knosys.2019.06.019
Rahmawati, S., Nurjanah, D., & Rismala, R. (2018). Analisis dan implementasi pendekatan hybrid untuk sistem rekomendasi pekerjaan dengan metode knowledge based dan collaborative filtering. Indones. J. Comput., 3(2), 11. https://doi.org/10.21108/indojc.2018.3.2.210
Risdwiyanto, A., & Kurniyati, Y. (2015). Strategi pemasaran perguruan tinggi swasta di Kabupaten Sleman Yogyakarta berbasis rangsangan pemasaran. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(1), 1-23. http://dx.doi.org/10.30588/SOSHUMDIK.v5i1.142
Sallam, R. M., Hussein, M., & Mousa, H. M. (2020). An enhanced collaborative filtering-based approach for recommender systems. Int. J. Comput. Appl., 176(41), 9–15. https://doi.org/10.5120/ijca2020920531
Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In Adapt. Web Lect. Notes Comput. Sci., 4321/2007, 291–324. https://doi.org/10.1007/978-3-540-72079-9_9
Shen, J., Zhou, T., & Chen, L. (2020). Collaborative filtering-based recommendation system for big data. Int. J. Comput. Sci. Eng., 21(2), 219–225. https://doi.org/10.1504/IJCSE.2020.105727
Ungkawa, U., Rosmala, D., & Aryanti, F. (2011). Pembangunan aplikasi travel recommender dengan metode case base reasoning. Jurnal Informatika, 4(1), 57–68.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Repeater : Publikasi Teknik Informatika dan Jaringan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.