Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film

Authors

  • Rayhan Rizal Mahendra Universitas Pembangunan Nasional Veteran Jawa Timur
  • Fetty Tri Anggraeny Universitas Pembangunan Nasional Veteran Jawa Timur
  • Henni Endah Wahanani Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.62951/repeater.v2i3.140

Keywords:

Item Based Collaborative Filtering, Recommendations, Film Analysis

Abstract

Item-based collaborative filtering is a popular technique in recommendation systems that aims to provide suggestions for films to watch or services to users based on similarities between items. In this approach, the similarity between items is calculated using metrics such as cosine similarity, allowing the prediction of user preferences for items that have never been rated. This research implements Item-based collaborative filtering using datasets from Kaggle. Experimental results show that the resulting model is able to provide recommendations with significant improvements in evaluation metrics such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of 3.05 and 3.26. This shows that the smaller the value, the better.

Downloads

Download data is not yet available.

References

Bator, R. J., Bryan, A. D., & Schultz, P. W. (2011). Who gives a hoot?: Intercept surveys of litterers and disposers. Environment and Behavior, 43(3), 295–315. https://doi.org/10.1177/0013916509356884

Guo, J., Deng, J., Ran, X., Wang, Y., & Jin, H. (2021). An efficient and accurate recommendation strategy using degree classification criteria for item-based collaborative filtering. Expert Syst. Appl., 164, 113756. https://doi.org/10.1016/j.eswa.2020.113756

Hidayati, S. N. (2016). Pengaruh pendekatan keras dan lunak pemimpin organisasi terhadap kepuasan kerja dan potensi mogok kerja karyawan. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(2), 57-66. http://dx.doi.org/10.30588/SOSHUMDIK.v5i2.164

Indriawan, W., Gufroni, A. I., & Informatika, J. F. T. U. S. T. (2020). Sistem rekomendasi penjualan produk pertanian menggunakan metode item based collaborative filtering. J. Siliwangi, 6(2).

Jepriana, I. W. (2018). Algoritme genetika untuk mengurangi galat prediksi metode item-based collaborative filtering. 2001, 1–7.

Jepriana, W., & Hanief, S. (2020). Analisis dan implementasi metode item-based collaborative filtering untuk sistem rekomendasi konsentrasi di STMIK STIKOM Bali. Janapati, 9(2), 171–180.

Johansson, P. (2004). Design and development of recommender dialogue systems. Institutionen för datavetenskap.

Nassar, N., Jafar, A., & Rahhal, Y. (2020). A novel deep multi-criteria collaborative filtering model for recommendation system. Knowledge-Based Syst., 187. https://doi.org/10.1016/j.knosys.2019.06.019

Rahmawati, S., Nurjanah, D., & Rismala, R. (2018). Analisis dan implementasi pendekatan hybrid untuk sistem rekomendasi pekerjaan dengan metode knowledge based dan collaborative filtering. Indones. J. Comput., 3(2), 11. https://doi.org/10.21108/indojc.2018.3.2.210

Risdwiyanto, A., & Kurniyati, Y. (2015). Strategi pemasaran perguruan tinggi swasta di Kabupaten Sleman Yogyakarta berbasis rangsangan pemasaran. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(1), 1-23. http://dx.doi.org/10.30588/SOSHUMDIK.v5i1.142

Sallam, R. M., Hussein, M., & Mousa, H. M. (2020). An enhanced collaborative filtering-based approach for recommender systems. Int. J. Comput. Appl., 176(41), 9–15. https://doi.org/10.5120/ijca2020920531

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In Adapt. Web Lect. Notes Comput. Sci., 4321/2007, 291–324. https://doi.org/10.1007/978-3-540-72079-9_9

Shen, J., Zhou, T., & Chen, L. (2020). Collaborative filtering-based recommendation system for big data. Int. J. Comput. Sci. Eng., 21(2), 219–225. https://doi.org/10.1504/IJCSE.2020.105727

Ungkawa, U., Rosmala, D., & Aryanti, F. (2011). Pembangunan aplikasi travel recommender dengan metode case base reasoning. Jurnal Informatika, 4(1), 57–68.

Published

2024-07-18

How to Cite

Rayhan Rizal Mahendra, Fetty Tri Anggraeny, & Henni Endah Wahanani. (2024). Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film. Repeater : Publikasi Teknik Informatika Dan Jaringan, 2(3), 213–221. https://doi.org/10.62951/repeater.v2i3.140

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.