Identification of Flower Type Images Using KNN Algorithm With HSV Color Extraction and GLCM Texture

Authors

  • Edhy Poerwandono STIKOM Cipta Karya Informatics
  • M. Endang Taufik STIKOM Cipta Karya Informatics

DOI:

https://doi.org/10.62951/router.v3i1.385

Keywords:

Identification, HSV, GLCM, K-Nearest Neighbor

Abstract

Due to the variety of types of flowers that exist and having and tracking each variety, making plant lovers and cultivators difficult to distinguish in determining the type of flower, it takes a very long time to find out the type of flower if you only rely on the five senses. With the application of the K-Nearest Neighbor algorithm and feature extraction of color and texture, it is very helpful in image processing to identify flowers more easily and shorten the time, with the greatest accuracy of 71% using the K-7 value, the flower was successfully carried out.

Downloads

Download data is not yet available.

References

[1] A. D. Williams, S. N. Abbott, N. Shoman, and W. S. Charlton, “Results from Invoking Artificial Neural Networks to Measure Insider Threat Detection & Mitigation,” Digit. Threat. Res. Pract., vol. 3, no. 1, 2022, doi: 10.1145/3457909.

[2] B. N. G. Koneru and V. Vasudevan, “Sparse artificial neural networks using a novel smoothed LASSO penalization,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 5, pp. 848–852, 2019, doi: 10.1109/TCSII.2019.2908729.

[3] B. Isik et al., “Neural Network Compression for Noisy Storage Devices,” 2021, doi: 10.1145/3588436.

[4] E. O. Nascimento and L. N. Oliveira, “Numerical Optimization of Flight Trajectory for Rockets Via Artificial Neural Networks,” IEEE Lat. Am. Trans., vol. 15, no. 8, pp. 1556–1565, 2017.

[5] F. Anders, M. Hlawitschka, and M. Fuchs, “Comparison of artificial neural network types for infant vocalization classification,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 29, pp. 54–67, 2021, doi: 10.1109/TASLP.2020.3037414.

[6] G. Yang, H. He, and Q. Chen, “Emotion-semantic-enhanced neural network,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 27, no. 3, pp. 531–543, 2019, doi: 10.1109/TASLP.2018.2885775.

[7] J. Bruinsma and R. Carloni, “IMU-Based Deep Neural Networks: Prediction of Locomotor and Transition Intentions of an Osseointegrated Transfemoral Amputee,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1079–1088, 2021, doi: 10.1109/TNSRE.2021.3086843.

[8] M. Hosseini and T. Mohsenin, “Binary Precision Neural Network Manycore Accelerator,” ACM J. Emerg. Technol. Comput. Syst., vol. 17, no. 2, 2021, doi: 10.1145/3423136.

[9] A. J. Paul, P. J. Collins, and M. A. Temple, “Enhancing Microwave System Health Assessment Using Artificial Neural Networks,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 11, pp. 2230–2234, 2019, doi: 10.1109/LAWP.2019.2926932.

[10] S. V. Medina and U. P. Ajenjo, “Performance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Output,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 3, pp. 484–490, 2020, doi: 10.35833/MPCE.2018.000792.

[11] P. Staszewski, M. Jaworski, J. Cao, and L. Rutkowski, “A New Approach to Descriptors Generation for Image Retrieval by Analyzing Activations of Deep Neural Network Layers,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12, pp. 7913–7920, 2022, doi: 10.1109/TNNLS.2021.3084633.

[12] T. Liu, H. Mei, Q. Sun, and H. Zhou, “[email protected],” pp. 1–6, 2019.

[13] W. C. Yeh, “A squeezed artificial neural network for the symbolic network reliability functions of binary-state networks,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 11, pp. 2822–2825, 2017, doi: 10.1109/TNNLS.2016.2598562.

[14] Y. Gao, L. T. Yang, D. Zheng, J. Yang, and Y. Zhao, “Quantized Tensor Neural Network,” ACM/IMS Trans. Data Sci., vol. 2, no. 4, pp. 1–18, 2021, doi: 10.1145/3491255.

[15] Z. Chen, T. B. Xu, C. Du, C. L. Liu, and H. He, “Dynamical Channel Pruning by Conditional Accuracy Change for Deep Neural Networks,” IEEE Trans. Neural Networks Learn. Syst., vol. 32, no. 2, pp. 799–813, 2021, doi: 10.1109/TNNLS.2020.2979517.

[16] P. Seminar and N. Riset, “Jaringan Syaraf Tiruan Backpropogation dalam Memprediksi Jumlah Tilang di Kejaksaan Negeri Simalungun,” no. September, pp. 697–708, 2019.

[17] J. Antares, T. Infomasi, and U. Dharmawangsa, “Artificial Neural Network Dalam Mengidentifikasi Penyakit Stroke Menggunakan Metode Backpropagation ( Studi Kasus di Klinik Apotik Madya Padang ),” vol. 1, no. 1, pp. 6–14, 2020.

[18] H. Putra and N. Ulfa, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” vol. 02, pp. 100–107, 2020.

[19] I. Engineering, S. Tunas, and B. Pematangsiantar, “Implementation of Artificial Neural Networks In Predicting Students ‘ English Understanding Level Using The Backpropagation Method,” vol. 1, no. 2, pp. 77–86, 2020, doi: 10.30596/jcositte.v1i2.5072.

Downloads

Published

2025-02-14

How to Cite

Edhy Poerwandono, & M. Endang Taufik. (2025). Identification of Flower Type Images Using KNN Algorithm With HSV Color Extraction and GLCM Texture. Router : Jurnal Teknik Informatika Dan Terapan, 3(1), 01–14. https://doi.org/10.62951/router.v3i1.385