Analisis Sentimen Review Film Avatar 2 pada Platform IMDb Menggunakan LSTM dan GRU
DOI:
https://doi.org/10.62951/router.v3i1.395Keywords:
GRU, Imbalance Data, LSTM, Movie Reviews, Sentiment AnalysisAbstract
This research uses a deep learning-based sentiment analysis approach with several main stages, namely data collection, preprocessing, model preparation, and model building. In addition, this research also evaluates the impact of data splitting techniques on the model's performance during the training process.The evaluation results show that the LSTM-GRU model achieved the best performance on the character aspect, with an F1-score of 0.72 in the 90:10 splitting scenario. Meanwhile, the lowest F1-score was found in the editing aspect, with a value of 0.51 in the 80:20 splitting scenario. These findings indicate that the model is more effective in recognizing sentiment in narrative aspects compared to technical aspects. Furthermore, the data splitting technique significantly influences model performance, both in determining accuracy levels and in optimizing the model's effectiveness in identifying sentiment patterns more accurately.
Downloads
References
Adam, A. Z. R., & Setiawan, E. B. (2023). Social media sentiment analysis using convolutional neural network (CNN) and gated recurrent unit (GRU). Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 9(1), 119–131. https://doi.org/10.26555/jiteki.v9i1.25813
Amelia, D. S., & Aminuallah, N. C. (2023). Teks dan analisis sentimen pada chat grup Whatsapp menggunakan long short-term memory (LSTM). Jurnal Informatika dan Ilmu Data, 3.
Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma support vector machine (SVM). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944
Aziz Bawazir, L. A., & Daniel, M. F. (2024). The influence of IMDb ratings for KKN Film in Dancing Village on students’ watching interests (Students of STIKOM Interstudi Jakarta). Journal of Humanities Social Sciences and Business (JHSSB), 3(2), 431–440. https://doi.org/10.55047/jhssb.v3i2.960
Box Office: “Avatar 2” kalahkan “Last Jedi” di daftar box office AS sepanjang masa. (n.d.). Retrieved December 18, 2024, from https://deadline.com/2023/01/box-office-avatar-the-way-of-water-infinity-pool-cronenberg-1235243380/
Cahyani, G., Widayani, W., Anggita, S. D., Pristyanto, Y., Ikmah, I., & Sidauruk, A. (2022). Klasifikasi data review IMDb berdasarkan analisis sentimen menggunakan algoritma support vector machine. Jurnal Media Informatika Budidarma, 6(3), 1418. https://doi.org/10.30865/mib.v6i3.4023
Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Frontiers in Energy Research, 9, 652801. https://doi.org/10.3389/fenrg.2021.652801
Gultom, F., & Siregar, R. (2024). Implementasi recurrent neural network sebagai IDS terhadap serangan jaringan. Jurnal Teknologi Informasi dan Ilmu Komputer, 12(2).
Hadi, S. F. S. (n.d.). Analisis sentimen menggunakan recurrent neural network terkait isu Anies Baswedan sebagai calon presiden 2024. Jurnal Teknologi dan Ilmu Komputer, 10(2), 1682.
Jabat, D. E. B., Sipayung, L. Y., Raih, K., & Dakhi, S. (2024). Penerapan algoritma recurrent neural networks (RNN) untuk klasifikasi Ulos Batak Toba. Jurnal Informatika dan Sains Data, 1(2).
Lestandy, M., Abdurrahim, A., & Syafa’ah, L. (2021). Analisis sentimen tweet vaksin COVID-19 menggunakan recurrent neural network dan naïve Bayes. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(4), 802–808. https://doi.org/10.29207/resti.v5i4.3308
Mohammadi, A., & Shaverizade, A. (2021). Ensemble deep learning for aspect-based sentiment analysis. International Journal of Nonlinear Analysis and Applications, 12(Special Issue). https://doi.org/10.22075/ijnaa.2021.4769
Nurvania, J., & Lhaksamana, K. M. (2021). Analisis sentimen pada ulasan di TripAdvisor menggunakan metode long short-term memory (LSTM). Jurnal Ilmiah Teknologi dan Komputer, 8(4), 4124.
Pandunata, P., Nurdiansyah, Y., & Alfina, F. D. (2023). Aspect-based sentiment analysis of Avatar 2 movie reviews on IMDb using support vector machine. E3S Web of Conferences, 448, 02041. https://doi.org/10.1051/e3sconf/202344802041
Poetra, C. K., Pane, S. F., & Fatonah, N. S. (2022). Meningkatkan akurasi long short-term memory (LSTM) pada analisis sentimen vaksin COVID-19 di Twitter dengan Glove. Jurnal Telematika, 16(2), 85–90. https://doi.org/10.61769/telematika.v16i2.400
Ramadhan, N. J., Putri, V. A. P., & Riyadi, D. A. (2024). Eksplorasi analisis sentimen pada rating film IMDb: Pendekatan perbandingan menggunakan decision tree dan naive Bayes. Jurnal Informatika dan Teknologi Komputer, 4(3), 7273–7286.
Riskawati, R., Fatihanursari, F., Iin, I., & Rizki Rinaldi, A. (2024). Penerapan metode Naïve Bayes classifier pada analisis sentimen aplikasi Gopay. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 346–353. https://doi.org/10.36040/jati.v8i1.8699
Riyantoko, P. A., Fahrudin, T. M., Prasetya, D. A., Trimono, T., & Timur, T. D. (2022). Analisis sentimen sederhana menggunakan algoritma LSTM dan BERT untuk klasifikasi data spam dan non-spam. Prosiding Seminar Nasional Sains Data, 2(1), 103–111. https://doi.org/10.33005/senada.v2i1.53
Sagita, D. I., Arthansa, R. M., & Sari, A. P. (2024). Komparasi analisis sentimen ulasan film Avengers: Endgame di IMDb menggunakan metode Naïve Bayes dan SVM. STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, 3(3), 156–166. https://doi.org/10.55123/storage.v3i3.4026
Setiawan, R. T., & Setiawan, E. B. (2023). Sentiment analysis of BBCA stock price on Twitter data using LSTM and genetic algorithm optimization. Sinkron, 8(4), 2479–2489. https://doi.org/10.33395/sinkron.v8i4.12825
Tobing, F. A. T. (2024). Sentiment analysis of IMDb movie reviews using recurrent neural network algorithm. Jurnal Teknologi dan Ilmu Komputer, 16(1).
Utami, H. (2022). Analisis sentimen dari aplikasi Shopee Indonesia menggunakan metode recurrent neural network. Indonesian Journal of Applied Statistics, 5(1), 31. https://doi.org/10.13057/ijas.v5i1.56825
Widhiyasana, Y., Semiawan, T., Mudzakir, I. G. A., & Noor, M. R. (2021). Penerapan convolutional long short-term memory untuk klasifikasi teks berita bahasa Indonesia. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 10(4), 354–361. https://doi.org/10.22146/jnteti.v10i4.2438
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Router : Jurnal Teknik Informatika dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.