Analisis Sentimen Review Film Avatar 2 pada Platform IMDb Menggunakan LSTM dan GRU

Authors

  • Rani Saputri Universitas Amikom Yogyakarta
  • Anna Baita Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.62951/router.v3i1.395

Keywords:

GRU, Imbalance Data, LSTM, Movie Reviews, Sentiment Analysis

Abstract

This research uses a deep learning-based sentiment analysis approach with several main stages, namely data collection, preprocessing, model preparation, and model building. In addition, this research also evaluates the impact of data splitting techniques on the model's performance during the training process.The evaluation results show that the LSTM-GRU model achieved the best performance on the character aspect, with an F1-score of 0.72 in the 90:10 splitting scenario. Meanwhile, the lowest F1-score was found in the editing aspect, with a value of 0.51 in the 80:20 splitting scenario. These findings indicate that the model is more effective in recognizing sentiment in narrative aspects compared to technical aspects. Furthermore, the data splitting technique significantly influences model performance, both in determining accuracy levels and in optimizing the model's effectiveness in identifying sentiment patterns more accurately.

Downloads

Download data is not yet available.

References

Adam, A. Z. R., & Setiawan, E. B. (2023). Social media sentiment analysis using convolutional neural network (CNN) and gated recurrent unit (GRU). Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 9(1), 119–131. https://doi.org/10.26555/jiteki.v9i1.25813

Amelia, D. S., & Aminuallah, N. C. (2023). Teks dan analisis sentimen pada chat grup Whatsapp menggunakan long short-term memory (LSTM). Jurnal Informatika dan Ilmu Data, 3.

Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma support vector machine (SVM). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944

Aziz Bawazir, L. A., & Daniel, M. F. (2024). The influence of IMDb ratings for KKN Film in Dancing Village on students’ watching interests (Students of STIKOM Interstudi Jakarta). Journal of Humanities Social Sciences and Business (JHSSB), 3(2), 431–440. https://doi.org/10.55047/jhssb.v3i2.960

Box Office: “Avatar 2” kalahkan “Last Jedi” di daftar box office AS sepanjang masa. (n.d.). Retrieved December 18, 2024, from https://deadline.com/2023/01/box-office-avatar-the-way-of-water-infinity-pool-cronenberg-1235243380/

Cahyani, G., Widayani, W., Anggita, S. D., Pristyanto, Y., Ikmah, I., & Sidauruk, A. (2022). Klasifikasi data review IMDb berdasarkan analisis sentimen menggunakan algoritma support vector machine. Jurnal Media Informatika Budidarma, 6(3), 1418. https://doi.org/10.30865/mib.v6i3.4023

Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Frontiers in Energy Research, 9, 652801. https://doi.org/10.3389/fenrg.2021.652801

Gultom, F., & Siregar, R. (2024). Implementasi recurrent neural network sebagai IDS terhadap serangan jaringan. Jurnal Teknologi Informasi dan Ilmu Komputer, 12(2).

Hadi, S. F. S. (n.d.). Analisis sentimen menggunakan recurrent neural network terkait isu Anies Baswedan sebagai calon presiden 2024. Jurnal Teknologi dan Ilmu Komputer, 10(2), 1682.

Jabat, D. E. B., Sipayung, L. Y., Raih, K., & Dakhi, S. (2024). Penerapan algoritma recurrent neural networks (RNN) untuk klasifikasi Ulos Batak Toba. Jurnal Informatika dan Sains Data, 1(2).

Lestandy, M., Abdurrahim, A., & Syafa’ah, L. (2021). Analisis sentimen tweet vaksin COVID-19 menggunakan recurrent neural network dan naïve Bayes. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(4), 802–808. https://doi.org/10.29207/resti.v5i4.3308

Mohammadi, A., & Shaverizade, A. (2021). Ensemble deep learning for aspect-based sentiment analysis. International Journal of Nonlinear Analysis and Applications, 12(Special Issue). https://doi.org/10.22075/ijnaa.2021.4769

Nurvania, J., & Lhaksamana, K. M. (2021). Analisis sentimen pada ulasan di TripAdvisor menggunakan metode long short-term memory (LSTM). Jurnal Ilmiah Teknologi dan Komputer, 8(4), 4124.

Pandunata, P., Nurdiansyah, Y., & Alfina, F. D. (2023). Aspect-based sentiment analysis of Avatar 2 movie reviews on IMDb using support vector machine. E3S Web of Conferences, 448, 02041. https://doi.org/10.1051/e3sconf/202344802041

Poetra, C. K., Pane, S. F., & Fatonah, N. S. (2022). Meningkatkan akurasi long short-term memory (LSTM) pada analisis sentimen vaksin COVID-19 di Twitter dengan Glove. Jurnal Telematika, 16(2), 85–90. https://doi.org/10.61769/telematika.v16i2.400

Ramadhan, N. J., Putri, V. A. P., & Riyadi, D. A. (2024). Eksplorasi analisis sentimen pada rating film IMDb: Pendekatan perbandingan menggunakan decision tree dan naive Bayes. Jurnal Informatika dan Teknologi Komputer, 4(3), 7273–7286.

Riskawati, R., Fatihanursari, F., Iin, I., & Rizki Rinaldi, A. (2024). Penerapan metode Naïve Bayes classifier pada analisis sentimen aplikasi Gopay. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 346–353. https://doi.org/10.36040/jati.v8i1.8699

Riyantoko, P. A., Fahrudin, T. M., Prasetya, D. A., Trimono, T., & Timur, T. D. (2022). Analisis sentimen sederhana menggunakan algoritma LSTM dan BERT untuk klasifikasi data spam dan non-spam. Prosiding Seminar Nasional Sains Data, 2(1), 103–111. https://doi.org/10.33005/senada.v2i1.53

Sagita, D. I., Arthansa, R. M., & Sari, A. P. (2024). Komparasi analisis sentimen ulasan film Avengers: Endgame di IMDb menggunakan metode Naïve Bayes dan SVM. STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, 3(3), 156–166. https://doi.org/10.55123/storage.v3i3.4026

Setiawan, R. T., & Setiawan, E. B. (2023). Sentiment analysis of BBCA stock price on Twitter data using LSTM and genetic algorithm optimization. Sinkron, 8(4), 2479–2489. https://doi.org/10.33395/sinkron.v8i4.12825

Tobing, F. A. T. (2024). Sentiment analysis of IMDb movie reviews using recurrent neural network algorithm. Jurnal Teknologi dan Ilmu Komputer, 16(1).

Utami, H. (2022). Analisis sentimen dari aplikasi Shopee Indonesia menggunakan metode recurrent neural network. Indonesian Journal of Applied Statistics, 5(1), 31. https://doi.org/10.13057/ijas.v5i1.56825

Widhiyasana, Y., Semiawan, T., Mudzakir, I. G. A., & Noor, M. R. (2021). Penerapan convolutional long short-term memory untuk klasifikasi teks berita bahasa Indonesia. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 10(4), 354–361. https://doi.org/10.22146/jnteti.v10i4.2438

Downloads

Published

2025-03-06

How to Cite

Rani Saputri, & Anna Baita. (2025). Analisis Sentimen Review Film Avatar 2 pada Platform IMDb Menggunakan LSTM dan GRU. Router : Jurnal Teknik Informatika Dan Terapan, 3(1), 24–36. https://doi.org/10.62951/router.v3i1.395