Implementasi Business Intelligence dalam Pengendalian Mutu di Industri Manufaktur
DOI:
https://doi.org/10.62951/router.v3i2.504Keywords:
Business Intelligence, Manufacturing Industry, Product QualityAbstract
The manufacturing industry faces major challenges in maintaining consistent product quality amidst the dynamics of technology and global competition. This study aims to develop an effective Business Intelligence (BI) implementation model to support data-based quality control. The method used is a conceptual design approach through integrated system simulation, including MySQL database, PHP backend, Power BI visualization, Google Cloud AutoML predictive analytics, and initial processing using Microsoft Excel. Historical production data for 12 months is used for model training and defect trend visualization. The simulation results show that the implementation of BI can reduce product defect rates, accelerate system response, and increase inspection process efficiency. Technical validation proves the model's prediction accuracy is above 90%, while field validation shows positive acceptance from users regarding the ease of use of the dashboard. This system not only supports early detection of quality deviations but also contributes to real-time strategic decision making. With an integrated technology approach, BI enables medium-sized manufacturing companies to adopt an adaptive and sustainable digital quality system, in line with the concept of Quality 4.0.
Downloads
References
Azzahra, S. W., Setiawan, N. Y., & Purnomo, W. (2025). Pengembangan dashboard business intelligence dengan integrasi metode Kimball Lifecycle dan Design Thinking untuk memantau performa karyawan di PT Jalin Mayantara Indonesia. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 9(2). http://j-ptiik.ub.ac.id
Fajri, R., & Sinaga, M. (2020). Pengembangan sistem informasi penjaminan mutu internal berbasis web menggunakan Framework CodeIgniter [Tesis, Universitas Lampung]. http://repository.lppm.unila.ac.id/24238/
Jayaraman, K. D., & Jain, S. (2024). Leveraging Power BI for advanced business intelligence and reporting. International Journal for Research in Management and Pharmacy, 13(11), 21–36. https://www.researchgate.net/publication/390201091
Maesaroh, S., Lubis, R. R., Husna, L. N., Widyaningsih, R., Susilawati, R., & Yasmin, P. M. (2023). Efektivitas implementasi manajemen Business Intelligence pada Industri 4.0. ABDI: Jurnal Pengabdian dan Pemberdayaan Masyarakat, 2(1), 28–34. https://doi.org/10.24114/cess.v4i1.12051
Maulidah, L., Monica, N. I., & Hidayati, P. N. (2023). A systematic literature review: Penerapan business intelligence dalam meningkatkan pengambilan keputusan. Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer, 3(2), 167–185. https://doi.org/10.55606/juisik.v3i2.498
Mehdiyev, N., & Fettke, P. (2020). Local post-hoc explanations for predictive process monitoring in manufacturing. arXiv preprint, arXiv:2009.10513. https://arxiv.org/abs/2009.10513
Muku, I. D. G. D. B., Bayupati, I. P. A., & Susila, A. A. N. H. (2023). Pengembangan sistem Business Intelligence dalam monitoring performa perusahaan multi company. SINTECH Journal, 6(2), 99–106. https://doi.org/10.31598/sintechjournal.v6i2.1394
Purnama, A., Wijaya, I. N. Y. A., & Sudiatmika, I. B. K. (2022). Penerapan business intelligence untuk menganalisis data penjualan menggunakan Power BI. JINTEKS: Jurnal Informatika Teknologi dan Sains, 4(2), 118–123.
Quadir, A., Garg, P., Misra, S., & Shafiei, M. (2022). Quantifying the cost of quality in construction projects: An insight into the base of the iceberg. Quality & Quantity, 57, 1545–1564. https://doi.org/10.1007/s11135-022-01574-8
Rožanec, J. M., Trajkova, E., Dam, P., Fortuna, B., & Mladenic, D. (2021). Streaming machine learning and online active learning for automated visual inspection. arXiv preprint, arXiv:2110.09396. https://doi.org/10.48550/arXiv.2110.09396
Senjaya, R., Sari, B. N., & Purnamasari, I. (2024). Implementasi business intelligence pada Toko SMART-S dalam membantu proses analisis bisnis dengan metode OLAP. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 5906–5913. https://ojs.unsika.ac.id/index.php/jati/article/view/10401
Silitonga, L. E. T., Suputra, I. P. G. H., Putra, I. A. G. S., & Suhartana, I. K. G. (2024). Implementasi Business Intelligence menggunakan metode OLAP untuk mengambil keputusan penjualan properti. Jurnal Elektronik Ilmu Komputer Udayana, 13(1), 125–132. https://ojs.unud.ac.id/index.php/jik
Steven, K., Hariyanto, S., Arijanto, R., & Wijaya, A. H. (2021). Penerapan business intelligence untuk menganalisis data pada PT. Suryaplas Intitama menggunakan Microsoft Power BI. Jurnal ALGOR, 2(2), 41–50. https://jurnal.buddhidharma.ac.id/index.php/algor/index
Trajkova, E., Damjanovska, T., Mladenova, V., & Mladenov, M. (2022). Machine learning and AI in business intelligence: Trends and opportunities. International Journal of Computer Science and Organization, 11(3), 45–59.
Usuga Cadavid, J. P., Lamouri, S., Grabot, B., Pellerin, R., & Fortin, A. (2020). Machine learning applied in production planning and control: A state-of-the-art in the era of Industry 4.0. Journal of Intelligent Manufacturing, 31(6), 1531–1558. https://doi.org/10.1007/s10845-020-01524-x
Yumni, S. Z., & Widowati. (2021). Implementasi Microsoft Power BI dalam memantau kehadiran dan transportasi pegawai. Jurnal Sains dan Edukasi Sains, 4(1), 1–8. https://doi.org/10.24246/juses.v4i1p1-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Router : Jurnal Teknik Informatika dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.