Penggunaan Algoritma Naïve Bayes dengan Polarity Textblob untuk Analisis Sentimen pada Acara ASEAN CUP 2024 U-16 di Media Sosial Twitter

Authors

  • Arya Erlangga Universitas Dian Nuswantoro
  • Yani Parti Astuti Universitas Dian Nuswantoro
  • Etika Kartikadarma Universitas Dian Nuswantoro
  • Sindhu Rakasiwi [email protected]
  • Egia Rosi Subhiyakto Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62951/switch.v3i1.357

Keywords:

#timnasday, Textblob, naïve bayes, gaussian naïve bayes, twitter

Abstract

Football is a popular sport in the world and is enjoyed by people of all ages. The Indonesia U-16 national team played in the ASEAN CUP 2024 event in this field. Twitter users gave their support through #timnasday during the event. This provided many forms of support for the Indonesian national team which made it difficult to identify positive, neutral, and negative sentiments. This requires the use of lexicon-based textblob to perform automatic labeling. In the labeling results using textblob from a total of 1138 user tweet data resulted in positive sentiment values of 50.9% or 579 positive data, neutral 33.7% or 384 neutral data, and negative 15.4% or 175 negative data. In the test results using one of the machine learning from the naïve bayes classifier, namely gaussian naïve bayes with the division of test data and training data of 0.3 and 0.7, the accuracy value is 98.53%

Downloads

Download data is not yet available.

References

Azhar, R., Surahman, A., & Juliane, C. (2022). Analisis sentimen terhadap cryptocurrency berbasis Python TextBlob menggunakan algoritma Naïve Bayes. Jurnal Teknologi dan Informasi.

Kurniawan, M. A., Yuniarti, S., & Makin, S. (2024). Analisis sentimen AFC U23 Asian Cup 2024 menggunakan algoritma Naïve Bayes. Jurnal IPSIKOM, 12(1).

Lestari, N. A., et al. (2020). Metode Naive Bayes classifier dengan TextBlob untuk analisis sentimen terhadap pelayanan Indihome dan First Media. Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK), 4(1). Retrieved from https://t.co/Ws2wOyU5kz

Muzaki, A., & Witanti, A. (2021). Sentiment analysis of the community in the Twitter to the 2020 election in pandemic COVID-19 by method Naive Bayes classifier. Jurnal Teknik Informatika (Jutif), 2(2), 101–107. https://doi.org/10.20884/1.jutif.2021.2.2.51

Nugroho, H., & Sari, D. P. (2023). Penerapan Naïve Bayes untuk analisis sentimen dalam pemilihan umum. Jurnal Komunikasi dan Media, 10(3), 112–120.

Pratama, R., & Lestari, M. (2023). Penggunaan algoritma Naïve Bayes dalam analisis sentimen terhadap opini masyarakat terhadap produk baru. Jurnal Sistem Informasi dan Teknologi, 8(1), 65–72.

Santoso, B., & Hidayat, A. (2021). Penerapan analisis sentimen untuk monitoring tren topik di Twitter. Jurnal Ilmu Komputer, 9(2), 54–61.

Saputra, M. (2022). Analisis sentimen produk digital di Twitter dengan Naïve Bayes. Jurnal Analisis Data dan Komputer, 5(4), 233–245.

Simbolon, C. A. D., & Siahaan, C. (2021). Penggunaan komunikasi media sosial Twitter di kalangan remaja di Kecamatan Cibinong, Kabupaten Bogor. JISIP.

Wibowo, A., & Yuliana, R. (2020). Implementasi TextBlob pada analisis sentimen di media sosial. Jurnal Teknologi Komputer, 15(2), 78–85.

Downloads

Published

2025-01-17

How to Cite

Arya Erlangga, Yani Parti Astuti, Etika Kartikadarma, Sindhu Rakasiwi, & Egia Rosi Subhiyakto. (2025). Penggunaan Algoritma Naïve Bayes dengan Polarity Textblob untuk Analisis Sentimen pada Acara ASEAN CUP 2024 U-16 di Media Sosial Twitter. Switch : Jurnal Sains Dan Teknologi Informasi, 3(1), 177–189. https://doi.org/10.62951/switch.v3i1.357