Penerapan Algoritma Apriori Mengetahui Pola Tindakan Kriminal Berdasarkan Wilayah ( Studi Kasus : Polsek Sunggal)
DOI:
https://doi.org/10.62951/bridge.v2i4.200Keywords:
Data Mining, Crime, Apriori AlgorithmAbstract
Police Sector (Polsek) is one of the agencies that provide protection, order and ensure public safety in the sunggal area. The number of cases of criminal acts that occur makes residents feel unsafe and always feel threatened in certain areas in the Sunggal sub-district, the pattern of criminal acts that often occur due to several factors, one of which is due to the lack of security in the area so that many criminal acts occur as well as behaviour that has been planned by the perpetrator to achieve their goals by planning, preparing, implementing, disposing of evidence, even hiding or escaping depending on the type of crime committed based on the characteristics of the perpetrator, and the situation or context in which the crime occurred. Therefore, it is necessary to analyse techniques from existing criminal data using the a priori algorithm method to find patterns of relationships between variables that can assist agencies in taking action for public safety. Based on the research conducted, the above case is tested with a minimum support = 10%, confidence = 100% so that the results of the rule that meets the support and confidence values are obtained: ‘If the criminal act is theft then the job is self-employed’, then giving value is successful with 15% support, 100% confidence. And ‘If the age of 17-25 years, the criminal act is Theft then the job is unemployed’, then giving value is successful with 10% support, 100% confidence.
Downloads
References
Agita Dinda, H., & Ramadani, S. (2022). Korelasi penjualan produk pada toko kosmetik menggunakan metode Apriori. Agustus, 6(3).
Arief, N., Sudahri Damanik, I., Irawan, E., Tunas Bangsa, S., & Utara, S. (2021). Penerapan algoritma K-Medoids dalam mengelompokkan tingkat kasus kejahatan di setiap provinsi. KLIK: Kajian Ilmiah Informatika dan Komputer, 2(3), 111–116. https://djournals.com/klik
Aziz Muslim, M., Prasetiyo, B., Laily Harum Mawarni, E., Juli Herowati, A., Mirqotussa’adah, Hardiyanti Rukmana, S., & Nurzahputra, A. (2019). Data mining algoritma C4.5. Nuclear Physics, 13(1).
Budi Sutedjo, S. M., & Michael AN, S. (2018). Algoritma & teknik pemrograman. ANDI.
Kartono, K. (2007). Psikologi anak (Psikologi perkembangan). CV. Manjur Jaya.
Kristiawan, A., Relita, B., & Maulita, Y. (2018). Korelasi faktor penyebab tindak kekerasan dalam rumah tangga menggunakan data mining algoritma Apriori. Jurnal Media Infotama, 14(1), 21–30.
Pahlevi, M. R., & Seprina, I. (2022). Analisa pola kejahatan pencurian motor (studi kasus Polrestabes Palembang) dengan metode association rule menggunakan algoritma FP-Growth. Bina Darma Conference on Computer Science, 1(3), 328–336.
Relita Buaton, Zarlis, M., Efendi, S., & Yasin, V. (2019). Data mining time series (1st ed., Vol. 1). Wade Group.
Risdianti, Khoirunnisa Nasution, A., Oktaviandi, R., & Bu’ulolo, E. (2021). Penerapan algoritma Apriori untuk mengetahui pola jenis kejahatan yang sering terjadi (studi kasus: Polsek Percut Sei Tuan). Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 1(1), 117–120. http://prosiding.seminar-id.com/index.php/sensasi/issue/archivePage|117
Rosita, I. B. B. (2019). Prediksi putusan hukuman tindakan kriminalitas dengan menggunakan algoritma nearest neighbor (studi kasus: Pengadilan Negeri Lubuk Pakam). Majalah Ilmiah INTI, 6(2), 241–245.
Sanjaya, W. (2017). Algoritma & teknik pemrograman. Kencana.
Sidik, B. (2019). Pemrograman web dengan PHP. Informatika.
Winarti, D., Revita, E., & Yandani, E. (2021). Penerapan data mining untuk analisa tingkat kriminalitas dengan algoritma association rule metode FP-Growth. Jurnal SIMTIKA, 4(3).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bridge : Jurnal publikasi Sistem Informasi dan Telekomunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.