Penerapan Klasifikasi Pelanggan Berdasarkan Segmentasi Pelanggan pada UMKM Monex Toys Bekasi

Authors

  • Eugenea Chiquita Zahrani Assyarif Universitas Negeri Surabaya
  • I Kadek Dwi Nuryana Universitas Negeri Surabaya

DOI:

https://doi.org/10.62951/modem.v3i3.533

Keywords:

Classification, Customer Segmentation, K-Means Clustering, SVM, UMKM

Abstract

This study aims to conduct customer segmentation and develop a classification model to predict the clusters of new customers at Monex Toys Abadi Bekasi, a micro, small, and medium enterprise (MSME). Segmentation was performed using the K-Means Clustering algorithm, incorporating parameters such as Recency, Frequency, Monetary (RFM), purchased products, payment methods, shipping cost discounts, and the total number of products purchased by customers. The segmentation results revealed two clusters: (1) Discount Hunters and (2) Loyal Customers. Subsequently, a classification process was conducted to predict customer clusters using the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms. Evaluation results indicated that all models achieved high accuracy exceeding 98%. The best-performing model was obtained with SVM using a 70:30 data split, achieving an accuracy of 98.81%. This classification model was then implemented into a Streamlit-based cluster prediction application, enabling users to identify customer segments in real-time. The findings of this research are expected to assist MSMEs in understanding customer behavior, enhancing service quality, and supporting more effective marketing strategies.

Downloads

Download data is not yet available.

References

Afthoni, R., Hamdhani, M., Ardianto, Karimah, A. F., & Patria, H. (2021). Pemanfaatan algoritma machine learning untuk segmentasi pelanggan berbasis data konsumsi listrik di PT PLN XYZ. Seminar Nasional Teknik dan Manajemen Industri, 1(1). https://doi.org/10.28932/sentekmi2021.v1i1.85

Ariesty, R. (2015). Segmentasi pelanggan menggunakan SOM, algoritma K-Means dan analisis LRFM untuk penyusunan rekomendasi strategi pemasaran pada Klinik Kecantikan Nanisa, Sidoarjo [Skripsi, Institut Teknologi Sepuluh Nopember]. https://repository.its.ac.id/70832/

Dorojatun, H. (2023). Normalisasi dan standardisasi dalam data mining. Artikel DJKN KPKNL Mamuju. https://www.djkn.kemenkeu.go.id/artikel/baca/15943/Seri-Artikel-DDDM-KPKNL-Mamuju-Normalisasi-dan-Standardisasi-dalam-Data-Mining.html

Handijono, A., & Suhatman, Z. (2024). Meningkatkan deduplikasi data melalui kesamaan teks dalam pembelajaran mesin: Pendekatan komprehensif. AKADEMIK: Jurnal Mahasiswa Humanis, 4(2), 602–615. https://doi.org/10.37481/jmh.v4i2.955

Hasran. (2020). Klasifikasi penyakit jantung menggunakan metode K-Nearest Neighbor. Indonesian Journal of Data and Science, 1(1). https://doi.org/10.33096/ijodas.v1i1.3

Istikomah, N., & Hartono, B. (2022). Analisis persepsi promosi gratis ongkos kirim (ongkir) Shopee terhadap keputusan pembelian. Jurnal Bisnis Kompetitif, 1(2), 49–57. https://doi.org/10.35446/bisniskompetif.v1i2.1011

Kavlakoglu, E., & Winland, V. (2024). Apa itu K-Means clustering? IBM. https://www.ibm.com/id-id/topics/k-means-clustering

Komariyah, S., & Subiyantoro, H. (2023). Pengaruh kualitas produk, promosi, dan metode pembayaran terhadap keputusan pembelian konsumen pada marketplace Shopee (Studi kasus pada mahasiswa Universitas Bhinneka PGRI Tulungagung angkatan tahun 2019–2020). JURNAL ECONOMINA, 2(9), 2644–2659. https://doi.org/10.55681/economina.v2i9.839

Mulyani, H., Setiawan, R. A., & Fathi, H. (2023). Optimization of K value in clustering using silhouette score (Case study: Mall customers data). Journal of Information Technology and Its Utilization, 6(2), 45–50. https://doi.org/10.56873/jitu.6.2.5243

Nisa, K. (2019). Analisis cluster dengan menggunakan metode hierarki untuk pengelompokan kecamatan di Kabupaten Langkat berdasarkan indikator kesehatan [Skripsi, Universitas Islam Negeri Sumatera Barat]. http://repository.uinsu.ac.id/11406/

Nugroho, B. A., Pradana, A. K. A., & Nurfarida, E. (2021). Prediksi waktu kedatangan pelanggan servis kendaraan bermotor berdasarkan data historis menggunakan Support Vector Machine. Jurnal Edukasi dan Penelitian Informatika (JEPIN), 7(1), 25. https://doi.org/10.26418/jp.v7i1.42964

Putra, I. P., & Fadhillah, A. (2025). Perbandingan metode K-Means dan Hierarchical Clustering dalam pengelompokan data penduduk miskin di Kabupaten Cianjur. LANCAH: Jurnal Inovasi dan Tren, 3(1). https://doi.org/10.35870/ljit.v3i1.4028

Sari, D. R. P. (2023). Metode Principal Component Analysis (PCA) sebagai penanganan asumsi multikolinearitas. PARAMETER: Jurnal Matematika, Statistika dan Terapannya, 2(02), 115–124. https://doi.org/10.30598/parameterv2i02pp115-124

Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199

Wardhana, F. P., & Winarno, S. (2024). Analisis pemain terbaik sepak bola dengan menggunakan algoritma K-Means. Edumatic: Jurnal Pendidikan Informatika, 8(2), 409–417. https://doi.org/10.29408/edumatic.v8i2.27105

Wororomi, J. K., Reba, F., Mandowen, S. A., Sroyer, A. M., Manurung, H. E., Koibur, M. E., Pujiarini, E. H., Edy, M. R., Yuliana, H., Yusuf, M., & Dinata, R. M. (2024). Data mining (memahami pola di balik angka) (N. R. Jayanti, Ed.). Eureka Media Aksara.

Downloads

Published

2025-07-02

How to Cite

Eugenea Chiquita Zahrani Assyarif, & I Kadek Dwi Nuryana. (2025). Penerapan Klasifikasi Pelanggan Berdasarkan Segmentasi Pelanggan pada UMKM Monex Toys Bekasi. Modem : Jurnal Informatika Dan Sains Teknologi., 3(3), 47–65. https://doi.org/10.62951/modem.v3i3.533

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.