Perbandingan Akurasi CNN dan SVM Untuk Deteksi dan Klasifikasi Aktivitas Merokok

Authors

  • Galih Purbo Danu Kisowo Universitas Muhammadiyah Ponorogo

DOI:

https://doi.org/10.62951/router.v2i3.145

Keywords:

CNN Algorithm, SVM Algorithm, Smoking Detection, Smoking Classification

Abstract

This study compares the performance of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) algorithms in detecting and classifying smoking activities. Using an image dataset containing two classes, Smoking and Non-Smoking, this research implements transfer learning using the InceptionResNetV2 model for CNN and the SVM method. Evaluation results show that CNN has higher accuracy compared to SVM in detecting smoking activities. This research contributes to the development of surveillance systems for smoke-free areas in smart cities.

Downloads

Download data is not yet available.

References

Hasa, M. F., Aras, S., Salsabila, F. M., & Safitri, N. (2024). Deteksi perokok di kawasan bebas rokok menggunakan YOLOv5. Jurnal Ilmiah, 10(1).

Khan, A., Khan, S., Hassan, B., & Zheng, Z. (2022). CNN-based smoker classification and detection in smart city application. Sensors, 22(3), 892. https://doi.org/10.3390/s22030892

Lakatos, R., Pollner, P., Hajdu, A., & Joo, T. (2023). A multimodal deep learning architecture for smoking detection with a small data approach. Frontiers in Artificial Intelligence, 7, 1326050. https://doi.org/10.3389/frai.2024.1326050

Musthofa, A., & Rahardi, M. (2023). Perbandingan algoritma support vector machine dan K-nearest neighbors pada sinyal tubuh perokok. Indonesian Journal of Computer Science, 12(6). https://doi.org/10.33022/ijcs.v12i6.3290

Naufal, M. F. (2021). Analisis perbandingan algoritma SVM, KNN, dan CNN untuk klasifikasi citra cuaca. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(2), 311–318. https://doi.org/10.25126/jtiik.2021824553

Rusdy Prasetyo, A., Sussi, & Aditya, B. (2023). Analisis perbandingan algoritma support vector machine (SVM) dan convolutional neural network (CNN) untuk sistem deteksi katarak. Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer, 3(1), 1–10. https://doi.org/10.51903/juritek.v3i1.604

Sanjaya, K. O., Indrawan, G., & Aryanto, K. Y. E. (2018). Pendeteksian objek rokok pada video berbasis pengolahan citra dengan menggunakan metode Haar cascade classifier. International Journal of Natural Science and Engineering, 1(3), 92. https://doi.org/10.23887/ijnse.v1i3.12938

Wang, D., Yang, J., & Hou, F.-H. (2022). Design of intelligent detection system for smoking based on improved YOLOv4. Sensors and Materials, 34(8), 3271. https://doi.org/10.18494/SAM3878

Published

2024-07-23

How to Cite

Galih Purbo Danu Kisowo. (2024). Perbandingan Akurasi CNN dan SVM Untuk Deteksi dan Klasifikasi Aktivitas Merokok. Router : Jurnal Teknik Informatika Dan Terapan, 2(3), 48–55. https://doi.org/10.62951/router.v2i3.145

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.