Perbandingan Akurasi CNN dan SVM Untuk Deteksi dan Klasifikasi Aktivitas Merokok
DOI:
https://doi.org/10.62951/router.v2i3.145Keywords:
CNN Algorithm, SVM Algorithm, Smoking Detection, Smoking ClassificationAbstract
This study compares the performance of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) algorithms in detecting and classifying smoking activities. Using an image dataset containing two classes, Smoking and Non-Smoking, this research implements transfer learning using the InceptionResNetV2 model for CNN and the SVM method. Evaluation results show that CNN has higher accuracy compared to SVM in detecting smoking activities. This research contributes to the development of surveillance systems for smoke-free areas in smart cities.
Downloads
References
Hasa, M. F., Aras, S., Salsabila, F. M., & Safitri, N. (2024). Deteksi perokok di kawasan bebas rokok menggunakan YOLOv5. Jurnal Ilmiah, 10(1).
Khan, A., Khan, S., Hassan, B., & Zheng, Z. (2022). CNN-based smoker classification and detection in smart city application. Sensors, 22(3), 892. https://doi.org/10.3390/s22030892
Lakatos, R., Pollner, P., Hajdu, A., & Joo, T. (2023). A multimodal deep learning architecture for smoking detection with a small data approach. Frontiers in Artificial Intelligence, 7, 1326050. https://doi.org/10.3389/frai.2024.1326050
Musthofa, A., & Rahardi, M. (2023). Perbandingan algoritma support vector machine dan K-nearest neighbors pada sinyal tubuh perokok. Indonesian Journal of Computer Science, 12(6). https://doi.org/10.33022/ijcs.v12i6.3290
Naufal, M. F. (2021). Analisis perbandingan algoritma SVM, KNN, dan CNN untuk klasifikasi citra cuaca. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(2), 311–318. https://doi.org/10.25126/jtiik.2021824553
Rusdy Prasetyo, A., Sussi, & Aditya, B. (2023). Analisis perbandingan algoritma support vector machine (SVM) dan convolutional neural network (CNN) untuk sistem deteksi katarak. Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer, 3(1), 1–10. https://doi.org/10.51903/juritek.v3i1.604
Sanjaya, K. O., Indrawan, G., & Aryanto, K. Y. E. (2018). Pendeteksian objek rokok pada video berbasis pengolahan citra dengan menggunakan metode Haar cascade classifier. International Journal of Natural Science and Engineering, 1(3), 92. https://doi.org/10.23887/ijnse.v1i3.12938
Wang, D., Yang, J., & Hou, F.-H. (2022). Design of intelligent detection system for smoking based on improved YOLOv4. Sensors and Materials, 34(8), 3271. https://doi.org/10.18494/SAM3878
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Router : Jurnal Teknik Informatika dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.