Penerapan Algoritma Machine Learning dalam Prediksi Prestasi Akademik Mahasiswa
DOI:
https://doi.org/10.62951/router.v3i1.389Keywords:
Machine Learning, Linear Regression, Decision Tree Regressor, Academic AchievementAbstract
This study explores the application of machine learning algorithms, specifically Linear Regression and Decision Tree Regressor, for predicting student academic performance using academic grade data from Kaggle. The analyzed factors include attendance, assignment grades, midterm exam grades, and final exam grades. The research methodology encompasses data collection, preprocessing, model development, training, and validation. This study contributes to the field of educational data analytics by demonstrating how machine learning can provide actionable insights into students' learning patterns and academic outcomes. The findings emphasize the effectiveness of Linear Regression for linearly distributed data and Decision Tree Regressor for capturing complex, non-linear relationships. The implications of this research suggest that machine learning models can assist educators in identifying key factors influencing student performance, enabling targeted interventions to enhance learning outcomes. Future research should explore larger, more diverse datasets and incorporate ensemble methods, such as Random Forest or Gradient Boosting, to improve model generalization and prediction accuracy. Additionally, integrating socio-economic and psychological factors could provide a more holistic perspective on academic achievement.
Downloads
References
B. Nurina, “Prediksi Performa Akademik Siswa Pada Pelajaran Matematika Menggunakan Bayesian Networks dan Algoritma Klasifikasi Machine Learning,” 2017. [Online]. Available: https://publikasiilmiah.ums.ac.id/bitstream/handle/11617/8818/PM-19%20Betha%20Nurina%20Sari%20hal%20397-405.pdf?sequence=1
A. Frananda Alfonsus Naibaho and A. Zahra, “Prediksi Kelulusan Siswa Sekolah Menengah Pertama Menggunakan Machine Learning Learning,” JITET: Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, 2023, https://doi:10.23960/jitet.v11i3.3056.
A. Wijoyo, A. Y. Saputra, S. Ristanti, S. R. Sya’Ban, M. Amalia, and R. Febriansyah, “Pembelajaran Machine Learning,” OKTAL : Jurnal Ilmu Komputer dan Sains, vol. 3, no. 02, pp. 375–380, 2024, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal/article/view/2305
N. Nailil Amani, M. Martanto, and U. Hayati, “Penggunaan Algoritma Decision Tree untuk Prediksi Prestasi Siswa di Sekolah Dasar Negeri 3 Bayalangu Kidul,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 473–479, Feb. 2024, https://doi:10.36040/jati.v8i1.8355.
S. C. Esananda, B. Nugroho, and F. Anggraeny, “Penerapan Algoritma Decision Tree Dalam Menentukan Prestasi Akademik Siswa,” Jurnal Informatika dan Sistem Informasi, vol. 2, no. 2, pp. 413–424, 2021, https://doi:10.33005/jifosi.v2i2.311.
B. Yusuf, M. Qalbi, B. Basrul, I. Dwitawati, M. Malahayati, and M. Ellyadi, “Implementasi Algoritma Naive Bayes dan Random Forest Dalam Memprediksi Prestasi Akademik Mahasiswa Universitas Islam Negeri Ar-Raniry Banda Aceh,” Cyberspace: Jurnal Pendidikan Teknologi Informasi, vol. 4, no. 1, p. 50, Jul. 2020, https://doi:10.22373/cj.v4i1.7247.
Z. Fadilla, M. Ketut Ngurah Ardiawan, M. Eka Sari Karimuddin Abdullah, M. Jannah Ummul Aiman, and S. Hasda, Metodologi Penelitian Kuantitatif. [Online]. Available: http://penerbitzaini.com
S. A. Rajagukguk, “Tinjauan Pustaka Sistematis: Prediksi Prestasi Belajar Peserta Didik Dengan Algoritma Pembelajaran Mesin,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol. 1, no. 1, Aug. 2021, https://doi:10.20885/snati.v1i1.4.
T. Gori, “Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa,” Jurnal Teknologi Informasi dan Ilmu Komputer/Jurnal teknologi informasi dan ilmu komputer, vol. 11, no. 1, pp. 215–224, 2024, https://doi:10.25126/jtiik.20241118074.
C. L. Saranya, S. Rao, and E. Ijmtst, “Predicting the Student Performance by using Machine Learning,” International Journal for Modern Trends in Science and Technology, vol. 9, no. 8, pp. 19–23, 2023, https://doi:10.46501/IJMTST0908004.
A. O. Oyedeji, A. M. Salami, O. Folorunsho, and O. R. Abolade, “Analysis and Prediction of Student Academic Performance Using Machine Learning,” JITCE (Journal of Information Technology and Computer Engineering), vol. 4, no. 01, pp. 10–15, Mar. 2020, https://doi:10.25077/jitce.4.01.10-15.2020.
A. Nurhidayat, A. Asmunin, and D. F. Suyatno, “Prediksi Kinerja Akademik Mahasiswa Menggunakan Machine Learning dengan Sequential Minimal Optimization untuk Pengelola Program Studi,” Journal of Information Engineering and Educational Technology, vol. 5, no. 2, pp. 84–91, Dec. 2021, https://doi:10.26740/jieet.v5n2.p84-91.
T. W.J., “Analisa Algoritma Regresi Linear dan Decision Tree Dalam Prediksi Penjualan Produk (Studi Kasus: Lookma Boutique).” [Online]. Available: https://lib.mercubuana.ac.id/
R. T. Dagdagui, “Predicting Students’ Academic Performance Using Regression Analysis,” Am J Educ Res, vol. 10, no. 11, pp. 640–646, Nov. 2022, https://doi:10.12691/education-10-11-2.
Salsabila Citra Esananda, B. Nugroho, and F. Anggraeny, “Penerapan Algoritma Decision Tree Dalam Menentukan Prestasi Akademik Siswa,” Jurnal Informatika dan Sistem Informasi, vol. 2, no. 2, pp. 413–424, Jul. 2021, https://doi:10.33005/jifosi.v2i2.311.
N. N. Amani, M. Martanto, and U. Hayati, “Penggunaan Algoritma Decision Tree untuk Prediksi Prestasi Siswa di Sekolah Dasar Negeri 3 Bayalangu Kidul,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 473–479, 2024, https://doi:10.36040/jati.v8i1.8355.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Router : Jurnal Teknik Informatika dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.