Implementasi Algoritma K-Nearest Neighbor (KNN) untuk Identifikasi Penyakit pada Tanaman Jeruk Berdasarkan Citra Daun
DOI:
https://doi.org/10.62951/router.v2i2.78Keywords:
Image Management, K-Nearnest Neighbor (KNN), Disease Identification, Citrus Plants, AccuracyAbstract
The development of image processing technology today can create systems that are able to effectively recognize digital images, one of which is in the field of agriculture for plant disease identification. Citrus plants experience a decrease in productivity due to pathogen attacks on leaves such as Black Spot, Cancer, and CVDP so that disease identification is needed. The classification method that can be used to classify images is the K-Nearest Neighbor (K-NN) algorithm because it is simple and has high accuracy in image management. This study aims to implement and determine the performance of the K-NN algorithm in identifying citrus plant diseases based on leaf images. This research uses a dataset from the Kaggle website of 1,096 images. There are 12 research scenarios using the comparison between test data and training data as much as 4, namely (90% training data + 10% test data, 80% training data + 20% test data, 70% training data + 30% test data, 60% training data + 40% test data) and testing with 3 random state values (42, 32, 22). The results showed that the K-NN algorithm is very effective in identifying citrus plant diseases with the highest accuracy value in the 90% training data scenario and 10% test data with a value of K = 2 which is 98.5%.
Downloads
References
Febrinanto, F. G., Dewi, C., & Wiratno, A. T. (2018). Implementasi Algoritme K-Means Sebagai Metode Segmentasi Citra Dalam Identifikasi Penyakit Daun Jeruk. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2548(964X).
Hahn, P. (2019). Artificial intelligence and machine learning. ... fur Mikrochirurgie der Peripheren Nerven und Gefasse .... Retrieved from https://europepmc.org/article/med/30786288
Hasna, U., Siregar, A. C., & Octariadi, B. C. (2023). Klasifikasi Bentuk Daun Tanaman Begonia (Begoniaceae) Menggunakan Metode K-Nearest Neighbor. Digital Intelligence, 3(1), 57-64.
Ikhsan, D., Utami, E., & Wibowo, F. W. (2020). Metode Klasifikasi Mutu Greenbean Kopi Arabika Lanang Dan Biasa Menggunakan K-Nearest Neighbor Berdasarkan Bentuk. Jurnal Ilmiah SINUS, 18(2), 1. https://doi.org/10.30646/sinus.v18i2.456
Jagoueix, S., Bove´, J. M., & Garnier, M. (1996). PCR detection of the two Candidatus Liberobacter species associated with greening disease of citrus. Molecular and Cellular Probes, 10(1), 43-50.
Pradana, I. M. A., & Karmini, N. L. (2022). Analisis faktor-faktor yang mempengaruhi pendapatan petani jeruk di Desa Belok Sidan Kecamatan Petang Kabupaten Badung. E-Jurnal EP Unud, 10(12), 4977-5005. https://ojs.unud.ac.id/index.php/eep/article/view/77159
Priandana, K., Zulfikar, A., & Sukarman. (2016). Android-Based Mobile Munsell Soil Color Chart by Using HVC Color Model Histogram with KNN Classification. Jurnal Ilmu Komputer Agri-Informatika, 3(2), 93-101.
Raharja, B. D., & Harsadi, P. (2018). Implementasi Kompresi Citra Digital Dengan Mengatur Kualitas Citra Digital. Jurnal Ilmiah SINUS, 16(2), 71–77. https://doi.org/10.30646/sinus.v16i2.363
Retnoningsih, E., & Pramudita, R. (2020). Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python. Bina Insani Ict Journal. Retrieved from http://101.255.92.196/index.php/BIICT/article/view/1422
Sanusi, H., Suryadi, H. S., & Susetianingtias, D. T. (2020). Pembuatan Aplikasi Klasifikasi Citra Daun Menggunakan Ruang Warna RGB Dan HSV. Jurnal Ilmiah Informatika Komputer, 24(3), 180-190.
Syafitri, N. (2010). Perbandingan Metode K-Nearest Neighbor (KNN) dan Metode Nearest Cluster Classifier (NCC) dalam Pengklasifikasian Kualitas Batik Tulis. Jurnal Teknologi Informasi & Pendidikan, 2(1), 43-53.
Teixeira, D. C., Danet, J. L., Eveillard, S., Martins, E. C., de Jesus Jr., W. C., Yamamoto, P. T., ... & Bove, J. M. (2005). Citrus huanglongbing in Sao Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. Molecular and Cellular Probes, 19(3), 173-179.
Wardhani, I. P., & Widayati, S. (2019). Segmentasi Warna Citra HSV dan Deteksi Objek Kupu-Kupu Dengan Metode Klasifikasi K-Means. Prosiding SeNTIK, 3(1), 125-131.
Wibowo, S. A., & Usman, K. (2010). Voice Activity Detection G729B Improvement Technique Using K-Nearest Neighbor Method. International Conference on Distributed Frameworks for Multimedia Applications (DFmA).
Wijaya, E. S., & Prayudi, Y. (2015). Integrasi Metode Steganografi DCS Pada Image Dengan Kriptografi Blowfish Sebagai Model Anti Forensik Untuk Keamanan Ganda Konten Digital. Seminar Nasional Aplikasi Teknologi Informasi (SNATi), pp. D11-D17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Router : Jurnal Teknik Informatika dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.