Clustering Menggunakan Algoritma K-Means untuk Mengelompokan Data Perjudian Berdasarkan Wilayah di Kota Binjai (Studi Kasus : Pengadilan Negeri Binjai)
DOI:
https://doi.org/10.62951/switch.v2i4.226Keywords:
Data Mining, Clustering, K-Means, GamblingAbstract
The Binjai District Court is a government agency that has the duty and authority to receive, examine and decide every case registered at the Binjai District Court. The Binjai District Court handles many gambling cases, but data management is still not fast and accurate because it still uses manual methods, so the agency needs to implement an application system. To solve this problem, you can use data mining applications, namely by utilizing existing data to dig up new information. One of the techniques in data mining is clustering. Clustering was chosen because it can group data according to the desired characteristics, in this research it means grouping gambling data in the Binjai City area. The clustering algorithm used is K-Means Clustering integrated into a desktop-based programming application. The conclusion obtained is that the system designed has proven successful in grouping gambling data into 3 clusters (groups). The process using MATLAB R2014a obtained results in group 1 which amounted to 276 data with a data centroid center (6.92; 2.41; 4.33) including the category of low levels of gambling, group 2 which amounted to 337 data with a data centroid center (7.56 ; 2.10; 14.48) is included in the category of moderate level of gambling and group 3 which amounts to 387 data with the centroid data (7.56; 2.10; 28.02) is included in the category of high level of gambling.
Downloads
References
Fakhri, D. A., Defit, S., & Sumijan. (2021). Optimalisasi Pelayanan Perpustakaan terhadap Minat Baca Menggunakan Metode K-Means Clustering. Jurnal Informasi Dan Teknologi. https://doi.org/10.37034/jidt.v3i3.137
Fastaf, C. A. S., & Yamasari, Y. (2022). Analisa pemetaan kriminalitas kabupaten bangkalan menggunakan metode k-means dan k-means++. Journal of Informatics and Computer Science (JINACS), 3(04), 534–546.
Hermawati, F. A. (2013). DATA MINING. CV ANDI OFFSET (Penerbit ANDI).
Ika Indah Rahayu, Yani Maulita, & Husnul Khair. (2022). Application Of Data Mining Classification Of Student Ability In Learning Using The K-Means Clustering Algorithm Method (Case Study : Sd Negeri 056029 Karya Utama). International Journal of Health Engineering and Technology, 1(3). https://doi.org/10.55227/ijhet.v1i3.47
Jollyta, D. (2021). TEKNIK EVALUASI CLUSTER SOLUSI MENGGUNAKAN PYTHON DAN RAPIDMINER. Deepublish (CV BUDI UTAMA).
Kesuma, P. W., Risalah, A., & Purba, B. P. (2020). Penerapan Data Mining Dalam Proses Pengelompokkan Data Masyarakat Kurang Mampu di Kota Deli Serdang Menggunakan Metode Clustering. Jurnal Masyarakat Informatika Sumatera Utara, 10(5). https://doi.org/10.14710/jmasif.v7i1.10794
Kesuma, U., & Hidayat, A. W. (2020). Pemikiran Thomas S. Kuhn Teori Revolusi Paradigma. Islamadina: Jurnal Pemikiran Islam, 166–187.
Nahdliyah, M. A., Widiharih, T., & Prahutama, A. (2019). METODE k-MEDOIDS CLUSTERING DENGAN VALIDASI SILHOUETTE INDEX DAN C-INDEX (Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018). Jurnal Gaussian, 8(2), 161–170. https://doi.org/10.14710/j.gauss.v8i2.26640
Oktarian, S., Defit, S., & Sumijan. (2020). Klasterisasi Penentuan Minat Siswa dalam Pemilihan Sekolah Menggunakan Metode Algoritma K-Means Clustering. Jurnal Informasi Dan Teknologi, 2(3). https://doi.org/http://www.jidt.org
Pradana, A. (2019). Pemetaan daerah kerawanan kriminalitas menggunakan.
Septiani, N., Erwansyah, K., & Suryanata, M. G. (2020). Analisis Data Mining Pengelompokkan Kasus Tindak Kejahatan Yang Terjadi Di Kecamatan Medan Polonia Dengan Menggunakan Metode K-Means Clustering. Jurnal Cyber Tech, 3(2).
Setiawan, R. (2021). Flowchart Adalah: Fungsi, Jenis, Simbol, dan Contohnya. Dicoding.
Sinaga, A. V., Saifullah, & Hardinata, J. T. (2021). Penerapan Algoritma Backpropagation dalam Memprediksi Kebutuhan Blangko Sertipikat Tanah pada Kantor BPN Kota Pematangsiantar. TIN: Terapan Informatika Nusantara, 1(4). https://doi.org/Doi : https://ejurnal.seminar-id.com/index.php/tin
Sujayanti Br Giniting, N., Maulita, Y., & Ramadani, S. (2023). Pengelompokan Pasien Operasi Sesar Berdasarkan Indikasinya Mengunakan Metode Clustering. Journal of Engineering, Technology and Computing, 2(3), 165–174.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Switch : Jurnal Sains dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.