Optimalisasi Prediksi Indeks Kualitas Air di Indonesia dengan Menggunakan Machine Learning Melalui Pendekatan Metode Prophet
DOI:
https://doi.org/10.62951/switch.v2i5.277Keywords:
Water Quality, Machine Learning, Prophet Model, PredictionAbstract
The Water Quality Index (WQI) shows the condition of water quality in an area based on the status of water quality resulting from the measurement of physical, chemical and bacteriological parameters of a water body both rivers and lakes. Several machine learning techniques can be used to predict water quality in an area, one of which is through the prophet model approach which is able to provide fairly accurate predictions for the water quality index in Indonesia. The main objective of this research is to obtain a WQI prediction value as a baseline in the formulation of future environmental control activity policies using the prophet model. The result is that the predicted value of IKA for 2021-2023 generated through machine learning with the prophet model approach shows that the Mean Absolute Error (MAE) value: 7.01, Root Mean Square Error (RMSE): 8.61 and Mean Absolute Percentage Error (MAPE): 13.06%, which means that IKA prediction with the prophet model is effective in capturing annual patterns between historical data and future predictions.
Downloads
References
Arwin Datumaya Wahyudi Sumari, Muhammad Bisri Musthafa, Ngatmari, & Dimas Rossiawan Hendra Putra. (2020). Comparative Performance of Prediction Methods for Digital Wallet Transactions in the Pandemic Period. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(4), 642–647. https://doi.org/10.29207/resti.v4i4.2024
Asiva Noor Rachmayani. (2022). Laporan Indeks Kualitas Lingkungan Hidup Kabupaten Aceh Timur Tahun 2022.
Avinash, A., Widjaja, A., & Karnalim, O. (2024). Analisis Perbandingan Algoritma Machine Learning untuk Forecasting Persediaan Produk Barang Pokok. Jurnal Teknik Informatika Dan Sistem Informasi, 10(2), 361–378. https://doi.org/10.28932/jutisi.v10i2.9357
Banerjee, K., Bali, V., Nawaz, N., Bali, S., Mathur, S., Mishra, R. K., & Rani, S. (2022). A Machine-Learning Approach for Prediction of Water Contamination Using Latitude, Longitude, and Elevation. Water (Switzerland), 14(5). https://doi.org/10.3390/w14050728
Cojbasic, S., Dmitrasinovic, S., Kostic, M., Sekulic, M. T., Radonic, J., Dodig, A., & Stojkovic, M. (2023). Application of machine learning in river water quality management: a review. Water Science and Technology, 88(9), 2297–2308. https://doi.org/10.2166/wst.2023.331
Cristianto Sihombing, Agung Hari Saputra, Fitria Puspita Sari, & Aditya Mulya. (2023). Prediksi Curah Hujan di Wilayah DKI Jakarta dengan Model NeuralProphet. Jurnal Aplikasi Meteorologi, 1(2), 9–19. https://doi.org/10.36754/jam.v1i2.317
Dinata, A., & Sutabri, T. (2024). Analisis Pengelolaan E-KTP dengan Pendekatan Framework COBIT 5 pada Domain Deliver, Service, dan Support. Journal of Information Technology Ampera, 5(1), 2774–2121. https://doi.org/10.51519/journalita.v5i1.517
Fadhli, M., Ikram, D., Studi, P., Informatika, T., Sains, F., Teknologi, D. A. N., Islam, U., & Syarif, N. (2022). Analisis Kinerja Model Prophet Untuk.
Fattah, N. F. (2024). Penerapan Data Mining Untuk Klasifikasi Kualitas Air Dengan Algoritma Support Vector Machine Pada Dinas Lingkungan Hidup Dan Pertanahan Provinsi Sumsel. PROSISKO: Jurnal Pengembangan Riset Dan Observasi Sistem Komputer, 11(2), 145–158. https://doi.org/10.30656/prosisko.v11i2.8285
Giovany Syuhada, E., & Helmi Setyawan, M. Y. (2023). Analisis Komparasi Metode Prophet Dan Metode Exponential Smoothing Dalam Peramalan Jumlah Pengangguran Di Jawa Barat: Systematic Literature Review. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1369–1377. https://doi.org/10.36040/jati.v7i2.6827
Hamdani, A. F., & Saputra, A. J. (2023). Prediksi Harga Saham Tesla Menggunakan Algoritma Neural Prophet Berbasis Mobile. … Nasional Teknologi & …, 2, 129–136. https://proceeding.unpkediri.ac.id/index.php/stains/article/view/2873%0Ahttps://proceeding.unpkediri.ac.id/index.php/stains/article/download/2873/1999
Kementrian Lingkungan Hidup dan Kehutanan. (2021). Indeks Lingkungan Hidup 2021. Publikasi Resmi, 1–23.
Kemlhk. (2020). IKLH Tahun 2019.
Kurniawan, B. (2019). Usulan Metode Penentuan Indeks Kualitas Air (IKA) di Indonesia Tahun 2020 - 2024.
Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS (Journal of Information System), 5(2), 250–255. https://doi.org/10.33633/joins.v5i2.3900
Nurani, A. T., Setiawan, A., & Susanto, B. (2023). Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma. Jurnal Sains Dan Edukasi Sains, 6(1), 34–43. https://doi.org/10.24246/juses.v6i1p34-43
Oktavia, F., & Witanti, A. (2024). Implementasi Prophet Forecasting Model Dalam Prediksi Kualitas Udara Daerah Istimewa Yogyakarta. Jl. Jembatan Merah No. 84 C Gejayan Yogyakarta, 11(1), 64–74. http://jurnal.mdp.ac.id
Pramaningsih, V., Yuliawati, R., Sukisman, S., Hansen, H., Suhelmi, R., & Daramusseng, A. (2023). Indek Kualitas Air dan Dampak terhadap Kesehatan Masyarakat Sekitar Sungai Karang Mumus, Samarinda. Jurnal Kesehatan Lingkungan Indonesia, 22(3), 313–319. https://doi.org/10.14710/jkli.22.3.313-319
Primawati, A., & Trinoto, A. A. (2024). Evaluasi Kinerja Prophet untuk Prediksi Harga Emas Berjangka. Faktor Exacta, 17(1), 40–46. https://doi.org/10.30998/faktorexacta.v17i1.22013
Raihan, A., Suhendi, A., & Berthaningtyas, H. (2023). Implementasi Metode Prophet pada Prediksi Tinggi Air Sungai. 10(5), 4412–4417.
Savitri, L., & Nursalim, R. (2023). Klasifikasi Kualitas Air Minum menggunakan Penerapan Algoritma Machine Learning dengan Pendekatan Supervised Learning. Diophantine Journal of Mathematics and Its Applications, 2(01), 30–36. https://doi.org/10.33369/diophantine.v2i01.28260
Sutabri, T. (2012). Analisis Sistem Informasi (C. Putri, Ed.; I). CV. Andi Offset.
Sutabri, T. (2014). Pengantar Teknologi Informasi (S. Wibowo & A. Sahala, Eds.; I). C.V Andi Offset.
Sutabri, T., & Napitulu, D. (2019). Sistem Informasi Bisnis (P. Christian, Ed.; I). CV. Andi Offset.
Uddin, M. G., Nash, S., Mahammad Diganta, M. T., Rahman, A., & Olbert, A. I. (2022). Robust machine learning algorithms for predicting coastal water quality index. Journal of Environmental Management, 321(July), 115923. https://doi.org/10.1016/j.jenvman.2022.115923
Yusria, L., Tri Basuki, K., Edi Surya, N., & Tata, S. (2022). Load Optimization with Shortest Distance Approach. Journal of Data Science, 2022(21), 1–13. http://eprints.intimal.edu.my/1696/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Switch : Jurnal Sains dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.