Integrasi Data Analytics dalam Kajian Perilaku Pengguna untuk Pengembangan Layanan Informasi

Authors

  • Sherly Rosa Anggraeni Universitas Negeri Malang

DOI:

https://doi.org/10.62951/modem.v3i2.364

Keywords:

Association Rule, Customer Segmentation , Data Analytics, K-Means Clustering, User Behaviour

Abstract

The rapid development of information and communication technology has driven the need for information services that are more relevant and adaptive to user behaviour. This research aims to integrate data analytics in the study of user behaviour to support the development of effective information services. The dataset used is Kaggle's Online Retail Dataset, which includes sales transaction data of online retail companies in the UK from December 2010 to December 2011. The analysis was conducted through customer segmentation using K-Means Clustering algorithm and predictive analysis with Association Rule Mining. The segmentation results successfully grouped customers into four main clusters, namely loyal customers, potential customers, passive customers, and low-spending customers. Model evaluation showed optimal performance with an accuracy rate of 85%, precision of 82%, recall of 78%, and F1-Score of 80%, and Silhouette Score of 0.62, indicating effective customer segmentation. The findings prove that the application of data analytics can provide deep insights into customer behaviour and support the development of more personalised and adaptive information services. This research is expected to be a reference in designing data-driven information service development strategies in various sectors.

Downloads

Download data is not yet available.

References

Ahmed, M., Dar, A. R., Helfert, M., Khan, A., & Kim, J. (2023). Data provenance in healthcare: Approaches, challenges, and future directions. Sensors, 23(14), 6495. https://doi.org/10.3390/s23146495

Alfarabi, S. (2024). Perancangan UI/UX pada aplikasi berbasis mobile TravelTrails menggunakan metode design thinking. Reputasi: Jurnal Rekayasa Perangkat Lunak, 5(1), 69–76. https://doi.org/10.31294/reputasi.v5i1.3439

Anggraini, B. S. K., & Dzikrullah, A. A. (2024). Implementasi analisis clustering K-Medoids dalam pengelompokan bayi lahir, gizi buruk, dan BBLR berdasarkan kecamatan di Kabupaten Sleman tahun 2020. Emerging Statistics and Data Science Journal, 2(1), 30–40. https://doi.org/10.20885/esds.vol2.iss.1.art4

Aswan, Y., Defit, S., & Nurcahyo, G. W. (2021). Algoritma K-Means clustering dalam mengklasifikasi data daerah rawan tindak kriminalitas (Polres Kepulauan Mentawai). Jurnal Sistim Informasi dan Teknologi, 3(4), 245–250. https://doi.org/10.37034/jsisfotek.v3i4.73

Avriyanti, D. A. M., & Handriana, T. (2022). Pengaruh perceived quality terhadap perceived usefulness dan perceived ease of use serta dampaknya pada satisfaction pada konsumen Shopee Indonesia. Ekonika: Jurnal Ekonomi Universitas Kadiri, 7(1), 116. https://doi.org/10.30737/ekonika.v7i1.1063

Çetin, V., & Yıldız, O. (2022). A comprehensive review on data preprocessing techniques in data analysis. Pamukkale University Journal of Engineering Sciences, 28(2), 299–312.

Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1).

Indiworo, H. E., Sumastuti, E., & Amelia, D. R. (2022). Optimizing the role of digital marketing through digital road trip to acceleration Tajuk Tourism Village pilot projects. Mattawang: Jurnal Pengabdian Masyarakat, 3(4), 424–430. https://doi.org/10.35877/454RI.mattawang1185

Iovlev, G., Goldina, I., Saakyan, M., & Zorkov, V. (2019). Digitalization of technical service: Formation and development prospects, impact on the efficiency of agricultural production. Proceedings of the International Scientific and Practical Conference “Digital Agriculture - Development Strategy”. https://doi.org/10.2991/ispc-19.2019.8

Kadir, N. T., Hartanto, R., & Sulistyo, S. (2021). Modified usability test scenario: User story approach to evaluate data visualization dashboard. IJITEE (International Journal of Information Technology and Electrical Engineering, 5(1). https://doi.org/10.22146/ijitee.61201

Levy, B., Murphy, K., Strevig, G., Decker, I., Hanson, K., Puttagunta, R., Sinha, S., Tavares, S., Warsame, L., & Vawdrey, D. (2022). The role of analytics governance to promote health care transformation. ACI Open, 6(1). https://doi.org/10.1055/s-0042-1744383

Li, C., & Pan, Y. (2024). A comprehensive study on user-centric smart life solutions: Integrating mobile integrated technology and big data analytics for digitalized smart city environments. Journal of Information Systems Engineering and Management, 9(1), 24684. https://doi.org/10.55267/iadt.07.14077

Mokhtari, G., Anvari-Moghaddam, A., & Zhang, Q. (2019). A new layered architecture for future big data-driven smart homes. IEEE Access, 7, 19002–19012. https://doi.org/10.1109/ACCESS.2019.2896403

Mujitahid, G. A. (2022). Pengaruh personalisasi mobile application terhadap disclosure behaviors melalui mediasi perceived benefit, perceived risk, dan mobile site trust. INOBIS: Jurnal Inovasi Bisnis dan Manajemen Indonesia, 6(1), 15–29. https://doi.org/10.31842/jurnalinobis.v6i1.254

Novianto, M. D., Sumantri, G., & Prihastuti, P. P. (2023). Clustering provinsi di Indonesia berdasarkan indeks pembangunan teknologi informasi dan komunikasi menggunakan K-Medoids. Emerging Statistics and Data Science Journal, 1(3), 320–331. https://doi.org/10.20885/esds.vol1.iss.3.art39

Preyaa, A. (2024). Enhancing big data security through comprehensive data protection measures: A focus on securing data at rest and in transit. International Journal of Computing and Engineering, 5(4), 44–55.

Prisanda, E., & Febrina, R. (2021). Penerapan teknologi informasi dan komunikasi berbasis aplikasi SISPEDAL dalam rangka mewujudkan good village governance. Journal of Governance Innovation, 3(2), 155–171. https://doi.org/10.36636/jogiv.v3i2.723

Rave, J. I. P., Álvarez, G. P. J., & Morales, J. C. C. (2021). Multi-criteria decision-making leveraged by text analytics and interviews with strategists. Journal of Marketing Analytics, 10(1), 30–49. https://doi.org/10.1057/s41270-021-00125-8

Susilo, D., Charolina, A., Ruswanti, D., & Charolina, A. (2023). Training of digital data management for academic services. Jurnal Pengabdian Teknologi Tepat Guna, 4(3), 205–211. https://doi.org/10.47942/jpttg.v4i3.1496

Sutabri, T., Sugiharto, T., Krisdiawan, R. A., & Azis, M. A. (2022). Pengembangan sistem informasi monitoring progres proyek properti berbasis website pada PT Peruri Properti. Jurnal Teknologi Informatika dan Komputer, 8(2), 17–29. https://doi.org/10.37012/jtik.v8i2.1204

Sutisna, N., & Sutrisna. (2023). Implementasi sistem informasi dalam mendukung perilaku pembelian terhadap keputusan pembelian e-commerce. Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi, 2(1), 20–30. https://doi.org/10.33050/mentari.v2i1.343

Ummadisetty, V. (2018). Online retail data set. Kaggle. https://www.kaggle.com/datasets/vijayuv/onlineretail

Zeng, Y., Zhong, N., Ren, X., & Wang, Y. (2012). User interests driven web personalization based on multiple social networks. Proceedings of the 4th International Workshop on Web Intelligence & Communities - WI&C ’12. https://doi.org/10.1145/2189736.2189749

Downloads

Published

2025-02-04

How to Cite

Sherly Rosa Anggraeni. (2025). Integrasi Data Analytics dalam Kajian Perilaku Pengguna untuk Pengembangan Layanan Informasi. Modem : Jurnal Informatika Dan Sains Teknologi., 3(2), 01–12. https://doi.org/10.62951/modem.v3i2.364

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.