Pengelompokan Tingkat Kecerdasan berdasarkan Kecerdasan Ganda (Multiple Intelligence) Anak di Sekolah Menggunakan Metode Clustering
Studi Kasus: SD Islamiyah
DOI:
https://doi.org/10.62951/switch.v2i4.197Keywords:
Intelligence Level, Clustering, K-MeansAbstract
Education is an important place for students to develop their potential based on their intelligence. Multiple intelligences offer an approach that considers the various potentials of students in the learning process. SD Islamiyah, as an educational institution with a vision to produce intelligent and creative generations, faces challenges in delivering learning that meets the needs of students. To address this issue, a system is needed that can analyze and group students based on their intelligence levels using the clustering method. This study is inspired by the application of data mining in the educational context, particularly in adapting the clustering method as applied in other related research. Previous research has demonstrated the success of the clustering method in accurately grouping data, as seen in studies related to flood warnings and cesarean operations. By applying a similar approach, this research aims to assist SD Islamiyah in identifying and grouping students based on their potential, thereby facilitating a more effective learning process tailored to the individual needs of students. The results of this study are expected to contribute positively to improving the quality of education at SD Islamiyah and provide a foundation for the development of more advanced decision support systems in the future
Downloads
References
Asmana, A. W., Y., & Martanto. (2022). Clustering data calon siswa baru menggunakan metode K-Means di Sekolah Menengah Kejuruan Wahidin Kota Cirebon. Jurnal Mahasiswa Teknik Informatika, 6(2). https://www.smkwahidincrb.sch.id/
Dewi, R. (2023). Aplikasi Matlab untuk simulasi pengolahan sinyal (A. Prijono, Ed.; 1st ed.). Zahir Publishing.
Dewi, S., Defit, S., & Yuhandri, Y. (2021). Akurasi pemetaan kelompok belajar siswa menuju prestasi menggunakan metode K-Means. Jurnal Sistem Informasi dan Teknologi, 28–33.
Kurniawan, H., Defit, S., & Sumijan. (2020). Data mining menggunakan metode K-Means clustering untuk menentukan besaran uang kuliah tunggal. Journal of Applied Computer Science and Technology, 1(2), 80–89. https://doi.org/10.52158/jacost.v1i2.102
Kusrini, & Taufiq Luthfi, E. (2009). Algoritma data mining (T. Ari Prabawati, Ed.; 1st ed.). CV Andi Offset.
Mawarni, Q. I., & Budi, E. S. (2022). Implementasi algoritma K-Means clustering dalam penilaian kedisiplinan siswa. Jurnal Sistem Komputer dan Informatika (JSON), 3(4), 522. https://doi.org/10.30865/json.v3i4.4242
Otong Kadang, M. (2021). Algoritma dan pemrograman (Abd. K. Muzakir, Ed.; Pertama). Humanities Genius.
Prasetyo. (2012). Data mining konsep dan aplikasi menggunakan MATLAB (Nikodemus WK, Ed.; 1st ed., Vol. 1). ANDI OFFSET.
Relita Buaton, Z., Zarlis, M., Efendi, S., & Yasin, V. (2019). Data mining time series (1st ed., Vol. 1). Wade Group.
Wahyudi, M., Masitha, Risna Saragih, & Solikhun. (2020). Data mining (J. Simarmata, Ed.; 1st ed.). Yayasan Kita Menulis.
Wanto, A., Noor Hasan Siregar, M., Perdana Windarto, A., Hartama, D., Sri Rahayu Ginantra, N. L. W., Napitupulu, D., Surya Negara, E., Ridwan Lubis, M., Vita Dewi, S., & Prianto Cahyo. (2020). Data mining algoritma & implementasi (T. Limbong, Ed.; 1st ed.). Yayasan Kita Menulis.
Yaumi, M., & Ibrahim, N. (2016). Kecerdasan jamak (multiple intelligences) mengidentifikasi dan mengembangkan multitalenta anak (T. Suhartati & S. Fatimah, Eds.; 1st ed., Vol. 1). PRENADAMEDIA GROUP.
Yudhistira, A., & Andika, R. (2023). Pengelompokan data nilai siswa menggunakan metode K-Means clustering. Journal of Artificial Intelligence and Technology Information (JAITI), 1(1), 20–28. https://doi.org/10.58602/jaiti.v1i1.22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Switch : Jurnal Sains dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.