Pengelompokan Data Kasus Keracunan Makanan Biologis Berdasarkan Faktor Penyebab Menggunakan Metode Clustering

Authors

  • Dwi Astuti STMIK Kaputama
  • Relita Buaton STMIK Kaputama
  • Magdalena Simanjuntak STMIK Kaputama

DOI:

https://doi.org/10.62951/bridge.v2i4.199

Keywords:

Data Mining, K-Means Algoritm, Food Poisoning

Abstract

Cases of biological food poisoning can be caused by several causative factors, one of which is a food processing site that does not meet health requirements. According to the BPOM report (2016) cases of food poisoning in Indonesia in 2016 reached 1,068 cases. In 2016, 60 extraordinary events (KLB) of food poisoning were reported by 31 BB/BPOM throughout Indonesia. From the many cases of food poisoning that occur, it is necessary to take action in prevention by processing data on existing cases of poisoning to follow up on existing problems to reduce the number of cases of food poisoning by using a system on a computer so that the managed data can be processed quickly to obtain further information. Therefore the author wants to use a system with the clustering method to assist in processing data on biological poisoning cases grouping objects based on the characteristics of each object. Based on the research conducted, it can be seen that in cluster 2 in the dasta group of biological poisoning cases there are 11 data with centroid point age (x) 2, namely 12-16 years, centroid point on the type of poisoning (y) 6.36, namely sandwiches, and centroid point on the causative factor (z) 2.9, namely Gram-negative rod-shaped bacteria which are usually found in the intestines of humans and warm-blooded animals.

Downloads

Download data is not yet available.

References

Adawiah, N., Suliatiyowati, N., & Jajuli, M. (2021). Klasterisasi kasus kekerasan terhadap anak dan perempuan berdasarkan algoritma K-Means. Generation Journal, 5(2), 69–80.

Alfikri, T. R., Fakhriza, M., & Ikhwan, A. (2024). Penerapan algoritma K-Means dalam mengelompokkan penyebaran penyakit di Kecamatan Sei Balai. Jurnal Teknik Informatika Kaputama (JTIK), 8(1), 1–7.

Arhami, M., & Nasir, M. (2020). Data mining (R. Indah Utami, Ed.; 1st ed.). CV Andi Offset.

Dewi, R. (2023). Aplikasi Matlab untuk simulasi pengolahan sinyal (A. Prijono, Ed.; 1st ed.). Zahir Publishing.

Efori Buulolo, S. Kom., & M. Kom. (2020). Data mining (1st ed.). CV Budi Utama.

Fitriana, N. F. (2021). Gambaran pengetahuan pertolongan pertama keracunan makanan. Jurnal Kesehatan Tambusai, 2(3), 173–178.

Laksana, F., Hidayat, R., & Dewi, Y. (2023). Pengelompokan jumlah kekerasan terhadap anak berdasarkan kecamatan di Kabupaten Banyumas menggunakan penerapan algoritma K-Means. INDEXIA: Informatic and Computational Intelligent Journal, 5(2), 123–135.

Matheos Sariole, F., & Hakim, L. (2024). Klasifikasi barang menggunakan metode clustering K-Means dalam penentuan prediksi stok barang. Jurnal Sains dan Teknologi, 5(3), 846–854. https://doi.org/10.55338/saintek.v5i1.2709

Nurhakim, B., Septiani, I., Anam, K., & Pratama, D. (2024). Penerapan algoritma K-Means clustering dalam menganalisis risiko penyakit stroke. Jurnal Mahasiswa Teknik Informatika, 8(1), 318–322.

Otong Kadang, M. (2021). Algoritma dan pemrograman (A. K. Muzakir, Ed.; Pertama). Humanities Genius.

Prasetyo, D. (2012). Data mining: Konsep dan aplikasi menggunakan MATLAB (N. WK, Ed.; 1st ed., Vol. 1). ANDI OFFSET.

Relita Buaton, Zarlis, M., Efendi, S., & Yasin, V. (2019). Data mining time series (1st ed., Vol. 1). Wade Group.

Santoso, T. B., & Hadi, A. S. (2019). Implementasi data mining untuk clustering daerah penyebaran penyakit diare di DKI Jakarta menggunakan algoritma K-Means. Jurnal Ilmiah FIFO, 1(2), 1–12.

Wanto, A., Noor Hasan Siregar, M., Perdana Windarto, A., Hartama, D., Sri Rahayu Ginantra, N. L., Napitupulu, D., Surya Negara, E., Ridwan Lubis, M., Vita Dewi, S., & Prianto Cahyo. (2020). Data mining: Algoritma & implementasi (T. Limbong, Ed.; 1st ed.). Yayasan Kita Menulis.

Yuniar, D. P. (2022). Kesehatan dan gizi anak usia dini (B. Adi Laksono, Ed.; 1st ed., Vol. 1). Bayfa Cendekia Indonesia.

Published

2024-08-28

How to Cite

Dwi Astuti, Relita Buaton, & Magdalena Simanjuntak. (2024). Pengelompokan Data Kasus Keracunan Makanan Biologis Berdasarkan Faktor Penyebab Menggunakan Metode Clustering. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(4), 19–31. https://doi.org/10.62951/bridge.v2i4.199

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)