Deteksi Alergen pada Produk Pangan Menggunakan Algoritma Support Vector Machines (SVM)

Authors

  • Siska Narulita Universitas Nasional Karangturi Semarang
  • Sekarlangit Sekarlangit Universitas Nasional Karangturi Semarang
  • Milka Putri Novianingrum Universitas Nasional Karangturi Semarang

DOI:

https://doi.org/10.62951/bridge.v3i1.393

Keywords:

Allergen, Data Mining, K-Fold Cross Validation, Split Validation, Support Vector Machines

Abstract

Food allergies are medical conditions caused by particular immunological reactions brought on by exposure to certain foods. All age groups can experience food allergies, albeit the prevalence varies between children and adults, with children experiencing this condition more frequently than adults. Find food ingredients or substances that can trigger allergies, often known as allergens. This project attempts to determine whether or not the food includes allergies by applying the SVM data mining method to a public dataset of food goods and allergens that was acquired via Kaggle. High accuracy, effective memory use, and the ability to handle non-normally distributed data are some of the benefits of the SVM method. Data collection is the first step in the research process. Data pre-processing, which includes data transformation, handling missing values, and copy objects, comes next. Validation comes next. Split validation with 90% training data and 10% testing data, 10-fold cross validation, and split validation with an 80%–20% ratio were all compared in this study. The SVM method is applied after the dataset has passed validation, and the confusion matrix is used for the last evaluation step. SVM has an accuracy rate of 97.24% when using 10-fold cross validation, according to the accuracy value produced by the validation process comparison. Split validation yields an accuracy value of 97.50% when the ratio of training data to testing data is 90% to 10%. In contrast, an accuracy rate of 98.75% was achieved by using split validation with a ratio of 80% and 20%.

Downloads

Download data is not yet available.

References

Aisah, I. S., Irawan, B., & Suprapti, T. (2023). Algoritma Support Vector Machine (SVM) untuk analisis sentimen ulasan aplikasi Al Qur’an digital. JATI: Jurnal Mahasiswa Teknik Informatika, 7(6), 3759–3765. https://doi.org/10.36040/jati.v7i6.8263

Amna, S. W., Sudipa, I. G. I., Putra, T. A. E., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Heryana, N., Indriyani, T., & Santoso, L. W. (2023). Data mining. PT Global Eksekutif Teknologi.

Ardin, A. (2025, February 17). Tak semua siswa ambil jatah MBG di Labuan Bajo karena alergi-vegetarian. Detik. https://www.detik.com

Asosiasi Institusi Pendidikan Tinggi Vokasi Gizi Indonesia (AIPVOGI). (2025, January 6). Standar gizi dan makanan dalam program makan bergizi gratis tahun 2025. https://aipvogi.org

Assa’ad, A. H. (2024). Implementasi machine learning dengan metode KNN, SVM, dan MLP dalam mendeteksi alergen makanan pada resep makanan [Institut Teknologi Sepuluh Nopember]. http://repository.its.ac.id/id/eprint/110334

Azizah, R. A., Bachtiar, F., & Adinugroho, S. (2022). Klasifikasi kinerja akademik siswa menggunakan neighbor weighted K-nearest neighbor dengan seleksi fitur information gain. JTIIK: Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(3), 605–614. https://doi.org/10.25126/jtiik.2022935751

Azizah, Z., Falihah, A. H., Santoso, B. B. A., Puspitasari, I., & Sahid, M. N. A. (2024). Frequency of food allergy based on a survey of adults in Yogyakarta and Java regions. Majalah Farmaseutik, 20(2), 276–281. https://doi.org/10.22146/farmaseutik.v20i2.85546

Dennis Aprilla C., Donny Aji Baskoro, Ambarwati, L., & Wicaksana, I. W. S. (2013). Belajar data mining dengan Rapid Miner (R. Sanjaya, Ed.). Open Content Model.

DetikBali, T. (2025, February 22). Pengelola dapur bantah 29 siswa di Sumba Timur keracunan setelah santap MBG. Detik. https://www.detik.com

Direktorat Jenderal Pendidikan Anak Usia Dini, Pendidikan Dasar, dan Pendidikan Menengah (2024). Pedoman makan bergizi gratis (MBG) di satuan pendidikan. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. https://aipvogi.org

Direktorat Standardisasi Pangan Olahan. (2019). Pedoman implementasi pelabelan pangan olahan. Deputi Bidang Pengawasan Pangan Olahan, Badan Pengawas Obat dan Makanan Republik Indonesia.

Gori, T., Sunyoto, A., & Fatta, H. Al. (2024). Preprocessing data dan klasifikasi untuk prediksi kinerja akademik siswa. JTIIK: Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(1), 215–224. https://doi.org/10.25126/jtiik.20241118074

Iglesia, E. G. A., Kwan, M., Virkud, Y. V., & Iweala, O. I. (2024). Management of food allergies and food-related anaphylaxis. JAMA, 331(6), 510–521. https://doi.org/10.1001/jama.2023.26857

Institute for Development of Economics and Finance (INDEF). (2024). Efek pengganda program makan bergizi gratis. https://indef.or.id

Irawan, R. N., Hindrayani, K. M., & Idhom, M. (2024). Penerapan cross validation sebagai analisis sentimen pelayanan publik kereta api lokal Daop 8 menggunakan metode multinomial naive bayes. G-Tech: Jurnal Teknologi Terapan, 8(2), 954–963. https://doi.org/10.33379/gtech.v8i2.4117

Miranda, S. (2025, January 13). Hari pertama program MBG di Surabaya, alergi menu tertentu jadi catatan khusus. Ketik.co.id. https://ketik.co.id

Musu, W., Ibrahim, A., & Heriadi. (2021). Pengaruh komposisi data training dan testing terhadap akurasi algoritma C4.5. SISITI: Seminar Sistem Informasi Dan Teknologi Informasi, 10(1), 186–195. https://ejurnal.undipa.ac.id/index.php/sisiti/article/view/802

Muttaqin, W., Widiyanto, W. W., Munsarif, M., Mandias, G. F., Pungus, S. R., Widarman, A., Hapsari, W. K., Hardiyanti, S. A., Fatkhudin, A., Pasnur, B., Anshori, M., Suryani, & Saputra, N. (2023). Pengenalan data mining. Yayasan Kita Menulis.

Narulita, S., & Adi, P. N. (2024). Feature selection information gain pada klasifikasi pasien penyakit jantung (heart disease). JURMIK: Jurnal Rekam Medis Dan Manajemen Informasi Kesehatan, 4(1), 13–19. https://doi.org/10.53416/jurmik.v4i1.240

Narulita, S., Prihati, O., Oktaga, A. T., & Widyantoro, A. E. (2023). Performansi algoritma clustering K-means untuk penentuan status malnutrisi pada balita. Jurnal Informasi, Sains, Dan Teknologi, 6(1), 188–202. https://isaintek.polinef.ac.id/index.php/isaintek/article/view/128

Nedyalkova, M., Vasighi, M., Azmoon, A., Naneva, L., & Simeonov, V. (2023). Sequence-based prediction of plant allergenic proteins: Machine learning classification approach. ACS Omega, 8(4), 3698–3704. https://doi.org/10.1021/acsomega.2c02842

News, T. (2025, January 12). Seorang pelajar tak bisa makan menu MBG karena alasan alergi, begini respons Cak Imin. Liputan6.com. https://www.liputan6.com

Putra, M. Y., & Putri, D. I. (2022). Pemanfaatan algoritma naive bayes dan K-nearest neighbor untuk klasifikasi jurusan siswa kelas XI. Jurnal Tekno Kompak, 16(2), 176–187. https://doi.org/10.33365/jtk.v16i2.2002

Rahayu, P. W., Sudipa, I. G. I., Suryani, S., Surachman, A., Ridwan, A., Darmawiguna, I. G. M., Sutoyo, M. N., Slamet, I., Harlina, S., & Maysanjaya, I. M. D. (2024). Buku ajar data mining. PT Sonpedia Publishing Indonesia. https://www.researchgate.net/publication/377415198_BUKU_AJAR_DATA_MINING

RapidMiner, I. (2024). Split validation (RapidMiner Studio Core). https://docs.rapidminer.com

Sari, K., Palupi, N. S., & Giriwono, P. E. (2021). Allergen sanitation in biscuit production process to reduce egg allergen residu. Journal of Food Technology and Industry, 32(2), 136–147. https://doi.org/10.6066/jtip.2021.32.2.136

Shaukat, H., Sultan, A., & Salahuddin, H. (2024). Enhancing food safety: A machine learning approach for accurate detection and classification of food allergens. Journal of Computing & Biomedical Informatics, Special Is, 1–16. https://jcbi.org/index.php/Main/article/view/474/371

Thet, T. T., Na, J.-C., & Khoo, C. S. G. (2010). Aspect-based sentiment analysis of movie reviews on discussion boards. Sage Journals, 36(6), 823–848. https://doi.org/10.1177/0165551510388123

Wang, L., Niu, D., Zhao, X., Wang, X., Hao, M., & Che, H. (2021). A comparative analysis of novel deep learning and ensemble learning models to predict the allergenicity of food proteins. Foods, 10(809), 1–15. https://doi.org/10.3390/foods10040809

Zhang, J., Lee, D., Jungles, K., Shaltis, D., Najarian, K., Ravikumar, R., Sanders, G., & Gryak, J. (2023). Prediction of oral food challenge outcomes via ensemble learning. Informatics in Medicine Unlocked, 36, 1–10. https://doi.org/10.1016/j.imu.2022.101142

Downloads

Published

2025-02-26

How to Cite

Siska Narulita, Sekarlangit Sekarlangit, & Milka Putri Novianingrum. (2025). Deteksi Alergen pada Produk Pangan Menggunakan Algoritma Support Vector Machines (SVM). Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 3(1), 64–76. https://doi.org/10.62951/bridge.v3i1.393

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.