Pengelompokan Penyakit pada Pasien Berdasarkan Usia dengan Metode K-Means Clustering
DOI:
https://doi.org/10.62951/bridge.v2i4.246Keywords:
Data Mining, Patient Clustering, K-MeansAbstract
This research aims to cluster disease data based on patient age using the K-Means method at RSUD Dr. RM. Djoelham. In this case study, the clustering method with the K-Means algorithm is used to group patients based on patient age, address and type of disease. With this method, information can be obtained regarding patient grouping patterns based on age at Dr. RM. Djoelham, who helps identify the closest relationships between patient groups and provides insight into the distribution of disease across age groups, regions and types of disease suffered.This research was conducted at RSUD Dr. RM. Djoelham by loading data from patients treated at the hospital. The data used is 1,100 patient data from 2022-2024 which has been recorded by the hospital. This patient data will be analyzed using 3 variables in the research, namely Patient Age (C1), Address (C2), and Type of Disease (C3). With the results, cluster 1 contains 320 data, cluster 2 contains 326 data, and cluster 3 contains 454 data.
Downloads
References
Amelia, R., Martanto, M., & Bahtiar, A. (2022). Penerapan algoritma K-Means clustering pada pengelompokkan pasangan usia subur peserta KB di Kabupaten Cirebon. Jurnal Teknologi Technoscientia, 15(1), 9–14. https://doi.org/10.34151/technoscientia.v15i1.3849
Bayu Prasetyo, R., Agus Pranoto, Y., & Primaswara Prasetya, R. (2023). Implementasi data mining menggunakan algoritma K-Means clustering penyakit pasien rawat jalan pada Klinik Dr. Atirah Desa Sioyong, Sulteng. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2144–2151. https://doi.org/10.36040/jati.v7i4.7419
Fauzi, J. R. (2020). Algoritma dan flowchart dalam menyelesaikan suatu masalah disusun oleh Universitas Janabadra Yogyakarta 2020. Jurnal Teknik Informatika, 20330044, 4–6.
Fauziah, R., & Purnamasari, A. I. (2023). Implementasi algoritma K-Means pada kasus kekerasan anak dan perempuan berdasarkan usia. Hello World Jurnal Ilmu Komputer, 2(1), 34–41. https://doi.org/10.56211/helloworld.v2i1.232
Fayyad, U. (1996). Advances in knowledge discovery and data mining. California: AAAI Press.
Haryati, S., Sudarsono, A., & Suryana, E. (2015). Implementasi data mining untuk memprediksi masa studi mahasiswa menggunakan algoritma C4.5 (Studi kasus: Universitas Dehasen Bengkulu). Jurnal Media Infotama, 11(2), 130–138.
Iswavigra, D. U., Defit, S., & Nurcahyo, G. W. (2021). Data mining dalam pengelompokan penyakit pasien dengan metode K-Medoids. Jurnal Informasi Dan Teknologi, 3, 181–189. https://doi.org/10.37034/jidt.v3i4.150
Khasanah, D. N. (2022). The risk factors of hypertension in Indonesia (Data study of Indonesian family life survey 5). Journal of Public Health Research and Community Health Development, 5(2), 80. https://doi.org/10.20473/jphrecode.v5i2.27923
Parasian D. P, S., & Irene Sri, M. (2017). Klusterisasi pola penyebaran penyakit pasien berdasarkan usia pasien dengan menggunakan K-Means clustering. Jurnal TIMES, 6(2), 22–25. http://ejournal.stmik-time.ac.id/index.php/jurnalTIMES/article/view/584
Rahmah, L. (2017). Perbandingan hasil penggerombolan K-Means, Fuzzy K-Means, dan Two Step Clustering. Jurnal Pendidikan Matematika, 2(1), 39. https://doi.org/10.18592/jpm.v2i1.1166
Rosaly, R., & Prasetyo, A. (2020). Flowchart beserta fungsi dan simbol-simbol. Journal of Chemical Information and Modeling, 2(3), 5–7.
Serasi Ginting, B., & Simanjuntak, M. (2021). Pengelompokan penyakit pada pasien berdasarkan usia dengan metode K-Means clustering (Studi kasus: Puskesmas Bahorok). ALGORITMA: Jurnal Ilmu Komputer Dan Informatika, 6341(November), 2.
Setiawan, R. (2021). Flowchart adalah: Fungsi, jenis, simbol, dan contohnya. Dicoding.
Sibuea, M. L., & Safta, A. (2017). Pemetaan siswa berprestasi menggunakan metode K-Means clustering. Jurteksi, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28
Sinaga, A. V., Saifullah, & Hardinata, J. T. (2021). Penerapan algoritma backpropagation dalam memprediksi kebutuhan blangko sertipikat tanah pada Kantor BPN Kota Pematangsiantar. TIN: Terapan Informatika Nusantara, 1(4). https://doi.org/doi: https://ejurnal.seminar-id.com/index.php/tin
Swastati, L. W. (2017). Pengenalan penyakit pada manusia berbasis Android menggunakan metode sequential search. Jurnal Mahasiswa Teknik Informatika (JATI), 1(1), 277–282.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bridge : Jurnal publikasi Sistem Informasi dan Telekomunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.