Penggunaan Visi Komputer untuk Mengidentifiksi Jenis Buah dari Gambar

Authors

  • Supiyandi Supiyandi Universitas Pembangunan Panca Budi
  • Rafif Rasendriya Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.62951/router.v2i4.287

Keywords:

Computer Vision, Fruit Recognition, Machine Learning, Object Identification, Image Classification

Abstract

Computer vision technology has advanced rapidly and made significant contributions across various fields, including object identification in images. This study aims to develop a computer vision-based system to identify fruit types from images. A machine learning model is applied using a dataset of fruit images to train the system for accurate fruit recognition. The primary processes include data acquisition, image preprocessing, feature extraction, model training, and performance evaluation. The results demonstrate a high level of accuracy in identifying specific fruit types, showcasing the potential of this technology in agricultural and commercial applications.

Downloads

Download data is not yet available.

References

Andri, Paulus, Wang, N. P., & Gunawan, T. (2015). Segmentasi buah menggunakan metode k-means clustering dan identifikasi kematangannya menggunakan metode perbandingan kadar warna. 6.

Cahya, F. N., Pebrianto, R., & M, T. A. (2021). Klasifikasi Buah Segar dan Busuk Menggunakan Ekstraksi Fitur Hu-Moment , Haralick dan Histogram. IJCIT (Indonesian Journal on Computer and Information Technology), 6(1), 57–62. https://doi.org/10.31294/ijcit.v6i1.10052

Harnaranda, J., Ramadhanu, A., & Padang, I. Y. (2024). Identifikasi Varietas Anggur Secara Otomatis Menggunakan Segmentasi Gambar Berbasis Warna dan Analisis Tekstur : Pendekatan K-Means Clustering. 5(4), 1973–1980.

Hermanto Laia, F., Rosnelly, R., Buulolo, K., Christin Lase, M., & Naswar, A. (2023). Klasifikasi Kematangan Buah Mangga Madani Berdasarkan Bentuk Dengan Jaringan Syaraf Tiruan Metode Perception. Device, 13(1), 14–20.

Ibnul Rasidi, A., Pasaribu, Y. A. H., Ziqri, A., & Adhinata, F. D. (2022). Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network. Jurnal Teknik Informatika Dan Sistem Informasi, 8(1), 142–149. https://doi.org/10.28932/jutisi.v8i1.4314

Laia, F. H., Rosnelly, R., Naswar, A., Buulolo, K., & Lase, M. C. M. (2023). Deteksi Pengenalan Wajah Orang Berbasis Ai Computer Vision. Jurnal Teknologi Informasi Mura, 15(1), 62–72. https://doi.org/10.32767/jti.v15i1.2024

Muhathir, M., Santoso, M. H., & Muliono, R. (2020). Analysis Naïve Bayes In Classifying Fruit by Utilizing Hog Feature Extraction. Journal of Informatics and Telecommunication Engineering, 4(1), 151–160. https://doi.org/10.31289/jite.v4i1.3860

Putri Ananda, T., Viola Widyasari, S., Ihsan Muttaqin, M., & Stefanie, A. (2023). Identifikasi Tingkat Kematangan Buah Pepaya Menggunakan Metode Convolutional Neural Network (Cnn). JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 2094–2097. https://doi.org/10.36040/jati.v7i3.7137

Saputra, A. (2019). Klasifikasi Pengenalan Buah Menggunakan Algoritma Naive Baiyes. Jurnal RESISTOR (Rekayasa Sistem Komputer), 2(2), 83–88. https://doi.org/10.31598/jurnalresistor.v2i2.434

Suhardin, I., Patombongi, A., & Islah, A. M. (2021). MENGIDENTIFIKASI JENIS TANAMAN BERDASARKAN CITRA DAUN MENGGUNAKAN AlGORITMA CONVOLUTIONAL NEURAL NETWORK. Simtek : Jurnal Sistem Informasi Dan Teknik Komputer, 6(2), 100–108. https://doi.org/10.51876/simtek.v6i2.101

Downloads

Published

2024-11-24

How to Cite

Supiyandi Supiyandi, & Rafif Rasendriya. (2024). Penggunaan Visi Komputer untuk Mengidentifiksi Jenis Buah dari Gambar. Router : Jurnal Teknik Informatika Dan Terapan, 2(4), 94–103. https://doi.org/10.62951/router.v2i4.287

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.