Penggunaan Visi Komputer untuk Mengidentifiksi Jenis Buah dari Gambar
DOI:
https://doi.org/10.62951/router.v2i4.287Keywords:
Computer Vision, Fruit Recognition, Machine Learning, Object Identification, Image ClassificationAbstract
Computer vision technology has advanced rapidly and made significant contributions across various fields, including object identification in images. This study aims to develop a computer vision-based system to identify fruit types from images. A machine learning model is applied using a dataset of fruit images to train the system for accurate fruit recognition. The primary processes include data acquisition, image preprocessing, feature extraction, model training, and performance evaluation. The results demonstrate a high level of accuracy in identifying specific fruit types, showcasing the potential of this technology in agricultural and commercial applications.
Downloads
References
Andri, Paulus, Wang, N. P., & Gunawan, T. (2015). Segmentasi buah menggunakan metode k-means clustering dan identifikasi kematangannya menggunakan metode perbandingan kadar warna. 6.
Cahya, F. N., Pebrianto, R., & M, T. A. (2021). Klasifikasi Buah Segar dan Busuk Menggunakan Ekstraksi Fitur Hu-Moment , Haralick dan Histogram. IJCIT (Indonesian Journal on Computer and Information Technology), 6(1), 57–62. https://doi.org/10.31294/ijcit.v6i1.10052
Harnaranda, J., Ramadhanu, A., & Padang, I. Y. (2024). Identifikasi Varietas Anggur Secara Otomatis Menggunakan Segmentasi Gambar Berbasis Warna dan Analisis Tekstur : Pendekatan K-Means Clustering. 5(4), 1973–1980.
Hermanto Laia, F., Rosnelly, R., Buulolo, K., Christin Lase, M., & Naswar, A. (2023). Klasifikasi Kematangan Buah Mangga Madani Berdasarkan Bentuk Dengan Jaringan Syaraf Tiruan Metode Perception. Device, 13(1), 14–20.
Ibnul Rasidi, A., Pasaribu, Y. A. H., Ziqri, A., & Adhinata, F. D. (2022). Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network. Jurnal Teknik Informatika Dan Sistem Informasi, 8(1), 142–149. https://doi.org/10.28932/jutisi.v8i1.4314
Laia, F. H., Rosnelly, R., Naswar, A., Buulolo, K., & Lase, M. C. M. (2023). Deteksi Pengenalan Wajah Orang Berbasis Ai Computer Vision. Jurnal Teknologi Informasi Mura, 15(1), 62–72. https://doi.org/10.32767/jti.v15i1.2024
Muhathir, M., Santoso, M. H., & Muliono, R. (2020). Analysis Naïve Bayes In Classifying Fruit by Utilizing Hog Feature Extraction. Journal of Informatics and Telecommunication Engineering, 4(1), 151–160. https://doi.org/10.31289/jite.v4i1.3860
Putri Ananda, T., Viola Widyasari, S., Ihsan Muttaqin, M., & Stefanie, A. (2023). Identifikasi Tingkat Kematangan Buah Pepaya Menggunakan Metode Convolutional Neural Network (Cnn). JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 2094–2097. https://doi.org/10.36040/jati.v7i3.7137
Saputra, A. (2019). Klasifikasi Pengenalan Buah Menggunakan Algoritma Naive Baiyes. Jurnal RESISTOR (Rekayasa Sistem Komputer), 2(2), 83–88. https://doi.org/10.31598/jurnalresistor.v2i2.434
Suhardin, I., Patombongi, A., & Islah, A. M. (2021). MENGIDENTIFIKASI JENIS TANAMAN BERDASARKAN CITRA DAUN MENGGUNAKAN AlGORITMA CONVOLUTIONAL NEURAL NETWORK. Simtek : Jurnal Sistem Informasi Dan Teknik Komputer, 6(2), 100–108. https://doi.org/10.51876/simtek.v6i2.101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Router : Jurnal Teknik Informatika dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.